
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IMPROVING UNMANNED AERIAL VEHICLE FORMATION FLIGHT AND 
SWARM COHESION BY USING COMMERCIAL OFF THE SHELF SONAR 

SENSORS 
 
 

THESIS 
 
 

Robert L. McClanahan, Captain, USAF 
 

AFIT-ENV-MS-17-M-202 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 
 

DISTRIBUTION STATEMENT A. 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



 

 
 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government.  This material is declared a work of the U.S. Government and is not 
subject to copyright protection in the United States.



 

AFIT-ENV-MS-17-M-202 
 

 

IMPROVING UNMANNED AERIAL VEHICLE FORMATION FLIGHT AND 
SWARM COHESION BY USING COMMERCIAL OFF THE SHELF SONAR 

SENSORS  
 
 

THESIS 

 
Presented to the Faculty 

Department of Systems Engineering and Management 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Systems Engineering 

 

 

Robert L. McClanahan, BS 

Captain, USAF 

 

March 2017 

DISTRIBUTION STATEMENT A. 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



 

AFIT-ENV-MS-17-M-202 

 

IMPROVING UNMANNED AERIAL VEHICLE FORMATION FLIGHT AND 
SWARM COHESION BY USING COMMERCIAL OFF THE SHELF SONAR 

SENSORS  
 
 

 
 

Robert L. McClanahan, BS 

Captain, USAF 

 

Committee Membership: 

 

Dr. David Jacques, PhD 
Chair 

 

Dr. John Colombi, PhD 
Member 

 

Lt Col Amy Cox, PhD 
Member 

 
 

 
 
 
 
 
 



iv 

 
AFIT-ENV-MS-17-M-202 
 

Abstract 

Unmanned Aerial Vehicle (UAV) formation flight and swarming are active areas of 

research within the Department of Defense (DoD). These areas of study cover multiple 

engineering disciplines; from mechanical and aeronautical to computer science and 

human factors. The current use of low cost commercial off the shelf (COTS) components 

to architect UAV formation flights results in insufficient position accuracy of the UAVs 

in the formation. Latency in communication between autonomous vehicles degrades 

formation cohesion. This research aims to demonstrate the position error of formation 

flights decreases by using onboard sonar sensors to accurately measure the distance the 

follower UAV is from the leader UAV. The sensor enables the follower UAV to 

appropriately and quickly respond to errors in position by adjusting the followers 

velocity.  The UAV architecture, using onboard sensors, demonstrated tighter formation 

cohesion by measuring the average position error during multiple flight tests of UAVs 

and compare these results with previous formation flight tests that did not utilize onboard 

sensors. The previous flight tests, used the same guided position algorithm, the same X-8 

airframes, but no onboard sensor for real time distance error measurement. Since the 

previous flight test had a similar configuration. This assessment shows how position error 

was effected by incorporating the sonar sensor.  This research effort was able to reduce 

the Root Mean Square Deviation (RMSD) by 37.3% and the average position error by 

70.9% when compared to the previous flight tests without sonar.  

 



v 

Acknowledgments 

I would like to express my sincere appreciation and gratitude to my faculty advisor, Dr. 

David Jacques, for not only his guidance, but his willingness to let loose of the reigns and 

let me run. This experience has been not only an academic challenge, but an absolute 

blast thanks to his leadership and support. I would also like to thank Mr. Rick Patton for 

always being ready to pounce and lend an eager, encouraging hand whenever something 

was asked of him or if I was just trying to pick his brain for his wealth of knowledge and 

experience. In addition, I would like to thank Jeremy Gray for all his help and guidance. 

Jeremy’s expertise in writing python scripts and interfacing with the Pixhawk was 

instrumental to the success of this research effort. Every interaction with Dr. Jacques, 

Rick, or Jeremy was always met with a handshake, a smile, and always a few laughs. I 

could not have asked for a more positive experience in graduate school and I know I have 

made a few more friends along the way.  

Finally, I would like to thank my loving wife for her unwavering support. Without her 

hard work and dedication to the family none of this would have been possible. She 

allowed me to spend countless hours locked in the basement, struggling, but determined 

not to let Python get the better of me.  I love you Lauren and thank you! 

 

 
       Robert L. McClanahan, Capt, USAF 

  



vi 

Table of Contents 
               Page 

Abstract .............................................................................................................................. iv 

List of Figures .................................................................................................................... ix 

List of Tables .................................................................................................................... xii 

I. Introduction ......................................................................................................................1 

1.1 Background.............................................................................................................1 

1.2 Problem...................................................................................................................2 

1.3 Objective.................................................................................................................3 

1.4 Justification.............................................................................................................3 

1.5 Scope ......................................................................................................................4 

1.6 Methodology...........................................................................................................5 

1.7 Research Questions ................................................................................................6 

1.8 Materials/Equipment ..............................................................................................6 

1.9 Thesis Summary .....................................................................................................7 

II. Literature Review ............................................................................................................8 

2.1 Chapter 2 Overview ................................................................................................8 

2.2 Swarming and Formation Flight Algorithms .........................................................8 

2.3 Onboard Sensors ...................................................................................................16 

2.4 Pixhawk Autopilot ................................................................................................18 

2.5 Conclusion ............................................................................................................21 

III. Methodology ................................................................................................................22 

3.1 Introduction ..........................................................................................................22 

3.2 Overview ..............................................................................................................22 

3.3 Materials and Equipment ......................................................................................23 



vii 

3.3.1 Unmanned Aerial Vehicles................................................................................23 

3.3.2 Pixhawk Autopilot .............................................................................................26 

3.3.3 Sonar Sensor ......................................................................................................26 

3.4 Procedures and Processes .....................................................................................27 

3.4.1 Algorithm ..........................................................................................................27 

3.4.2 Sonar Sensor Mounting .....................................................................................30 

3.4.3 Sonar Algorithm and Pixhawk Autopilot Response ..........................................33 

3.4.4 Flight test .......................................................................................................38 

3.4.5 Data Analysis.....................................................................................................39 

3.5 Summary...............................................................................................................40 

IV. Results and Analysis ....................................................................................................41 

4.1 Chapter 4 Overview ..............................................................................................41 

4.2 Ground Tests ........................................................................................................41 

4.2.1 Sonar Range Test ...............................................................................................41 

4.2.2 Sonar Algorithm Ground Tests .........................................................................44 

4.2.3 Guided Position Algorithm Ground Test ..........................................................48 

4.3 Flight Tests and Results........................................................................................50 

4.3.1 Initial 4m Separation Flight Test .......................................................................51 

4.3.2 3m Separation Flight Tests ................................................................................53 

4.3.2.1 Initial 3m Flight Test ......................................................................................54 

4.3.2.2 Final 3m Flight Test .......................................................................................56 

4.4 Flight Test Results Comparison ...........................................................................62 

V.  Conclusions and Recommendations ............................................................................64 



viii 

5.1 Chapter Overview .................................................................................................64 

5.2 Research Questions Answered .............................................................................64 

5.3 Recommendations for Future Research................................................................67 

5.4 System Implications .............................................................................................67 

5.5 Summary...............................................................................................................69 

Appendix A ........................................................................................................................73 

Sonar Script ................................................................................................................73 

Appendix B ........................................................................................................................76 

Follower Script ...........................................................................................................76 

Appendix C ........................................................................................................................80 

Leader Script ..............................................................................................................80 

Appendix D ........................................................................................................................83 

Multi-Vehicle Script ...................................................................................................83 

 

  



ix 

List of Figures 

           Page 

 
Figure 1. Articulation Point [13] ....................................................................................... 10 

Figure 2.Comparison of swarm in vulnerable states without (left) and with (right) mode 

switching [13] ............................................................................................................. 11 

Figure 3. Simulation Validation Using Sic Robots[13] .................................................... 11 

Figure 4. Modified Pigeon Inspired Algorithm [3] ........................................................... 12 

Figure 5. Follower Commanded Position Calculation Method [5]................................... 15 

Figure 6. Pixhawk Autopilot Basic Set Up [21] ............................................................... 19 

Figure 8. Mission Planner GUI [23] ................................................................................. 21 

Figure 9. 3DR X8 Quadcopter .......................................................................................... 24 

Figure 10. Leader Block Diagram .................................................................................... 25 

Figure 11. Follower Block Diagram ................................................................................. 25 

Figure 12. Pixhawk Autopilot [21] ................................................................................... 26 

Figure 13. I2CXL-MaxSonar®- EZ™ Series MB1202 [25] ............................................ 27 

Figure 14. Modified OV-1 from Gray [5] ......................................................................... 28 

Figure 15. SV-1 (System Interface Description) .............................................................. 29 

Figure 16. Sonar Gimbal Set Up ....................................................................................... 31 

Figure 17. Gimbal Figure 8 Search Pattern ...................................................................... 32 

Figure 18. Sonar Coverage Area ....................................................................................... 33 

Figure 19. Pixhawk Response Algorithm ......................................................................... 34 

Figure 20. OV-5b (Sonar Algorithm Activity Diagram) .................................................. 35 



x 

Figure 21. OV-5b Detail View 1....................................................................................... 36 

Figure 22. OV-5b Detail View 2....................................................................................... 37 

Figure 23. OV-5b Detail View 3....................................................................................... 38 

Figure 24. Leader Waypoint Pattern ................................................................................. 39 

Figure 25. Stock X-8 Quadrotor ....................................................................................... 42 

Figure 26. Modified X-8 Quadrotor.................................................................................. 42 

Figure 27. Lead X-8 with Aluminum Tape ...................................................................... 44 

Figure 28. Sonar Algorithm Ground Test Set Up ............................................................. 44 

Figure 29. Sonar Algorithm Outputs ................................................................................ 46 

Figure 30. Sonar Minimum Airspeed ............................................................................... 47 

Figure 31. Phase 1 Guided Algorithm Ground Test ......................................................... 49 

Figure 32. Guided Position Ground Test .......................................................................... 50 

Figure 33. 4m Test Flight.................................................................................................. 51 

Figure 34. GPS Track from 4m Flight Test ...................................................................... 52 

Figure 35. 3m Test Flight.................................................................................................. 53 

Figure 36. North/South Offsets ......................................................................................... 54 

Figure 37. Final 3m Flight Test ........................................................................................ 56 

Figure 38. Position at Matching Time .............................................................................. 57 

Figure 39. Raw Sonar Data ............................................................................................... 58 

Figure 40. Waypoint Nav Speed versus Ground Speed (Plot 1)....................................... 59 

Figure 41. Waypoint Nav Speed versus Ground Speed (Plot 2)....................................... 60 

Figure 42. Follower Position Error ................................................................................... 61 

Figure 43. Position Error Comparison .............................................................................. 63 



xi 



xii 

List of Tables 

              Page 

Table 1. Sensor Comparison ............................................................................................. 18 

Table 2. Sonar Parameters ................................................................................................ 20 

Table 3. 3D Robotics X8 Specifications [24] ................................................................... 24 

Table 4. Control Loop Frequencies .................................................................................. 30 

Table 5. Sonar Ground Test Results ................................................................................. 43 

Table 6. Sonar Algorithm Ground Test Matrix ................................................................ 45 

Table 7. 4m Flight Test Results ........................................................................................ 53 

Table 8 Initial 3m Flight Test ........................................................................................... 55 

Table 9 Final 3m Flight Test Results ................................................................................ 61 

Table 10 Gray's X-8 Quadrotor Results [5] ...................................................................... 62 

Table 11. Flight Test Comparison .................................................................................... 63 

 



1 

IMPROVING UNMANNED AERIAL VEHICLE FORMATION FLIGHT AND 
SWARM COHESION BY USING COMMERCIAL OFF THE SHELF SONAR 

SENSORS 
 

I. Introduction 

1.1 Background 

Unmanned Aerial Vehicle (UAV) formation flight and swarming are active areas 

of research within the Department of Defense (DoD). These areas of study cover multiple 

engineering disciplines; from mechanical and aeronautical to computer science and 

human factors. The Strategic Capabilities Office (SCO) recently unclassified information 

on their UAV swarm test and the SCO’s proposed fiscal year 2017 (FY17) budget has 

doubled from FY16 to $902 million in FY17 [1]. This budget increase shows the 

resources which the DoD is dedicating to UAV swarm and formation flight technology.   

There are numerous instances where close proximity flight is advantageous, to 

include, flying in a space constrained environment, controlling radar signature, and even 

electronic warfare beam shaping. Formation flight, like that of geese, would allow the 

UAVs to fly more efficiently, by dividing the induced aerodynamic drag among the 

formation [2]. A UAV swarm is a group of UAVs working together to accomplish a 

common goal. Multiple UAVs working together to accomplish a task can be extremely 

efficient in various scenarios. These scenarios include Search, Identify, Engage and 

Assess (SIEA) missions, area mapping, and even air refueling [3].  The DoD has an 

invested interest in all of these swarm areas.  One could imagine military scenarios that 

would fall into each of these categories. Using teamwork, the swarm can efficiently and 

more effectively accomplish the mission. UAV swarms can provide strength in numbers 



2 

and quickly overrun the enemy, much like a swarm of locust attacking a crop. According 

to the Air Force Chief Scientist, Gregory Zacharias, “Groups of coordinated small drones 

could also be used to confuse enemy radar systems and overwhelm advanced enemy air 

defenses by providing so many targets that they cannot be dealt with all at once” [4]. The 

enemy may be able to see the swarm coming, but there is nothing they can do about it, as 

there is no way to engage all of the UAVs. 

Controlling a UAV formation flight or swarm presents many challenges. These 

challenges range from organization of the formation or swarm, task allocation, inter-

swarm communication, and operator work load. Many control algorithms have been 

developed and are constantly evolving to address the numerous issues with swarming 

behavior.  Algorithms are designed with a certain mission in mind. The final swarm 

algorithm solution should be dynamic, allow various mission types, and even have the 

ability to switch mission type during execution. 

 A single operator cannot have situational awareness of the health and status of all 

the UAVs in a formation flight or swarm, and it obviously is not cost effective to have 

numerous operators controlling a swarm, with each operator responsible for a couple of 

the UAVs in the swarm. Therefore, some inherent risk exists in formation flight and 

swarm systems since the operator cannot have full situational awareness of each aircraft. 

1.2 Problem 

The current use of low cost commercial off the shelf (COTS) components to 

architect UAV formation flights results in insufficient position accuracy of the UAVs in 

the formation. Latency in communication between autonomous vehicles degrades 



3 

formation cohesion. Current COTS open-air formation architectures have separation 

variances of approximately 10m with an average position error of 3.10m during 

formation quadrotor test flights [5]. These vast position errors degrade and eliminate the 

swarm’s ability to accomplish the mission and remove the aerodynamic  or signature 

control advantages gained by the formation flight.  

1.3 Objective 

 Demonstrate that the use of onboard sonar sensors reduces the desired position 

error and by doing so, allows the commanded vehicle to vehicle offset or separation 

distance to be reduced. This will be accomplished by using onboard sonar sensors to both 

accurately measure the distance the follower UAV is from the leader UAV and enable the 

follower UAV to appropriately and quickly respond to errors in position.  The UAV 

architecture, using onboard sensors, will demonstrate tighter formation cohesion by 

measuring the average position error during multiple flight tests of UAVs and compare 

these results with previous formation flight tests, without using onboard sensors. The 

previous formation flight tests and data collected by Gray will be used for direct 

comparison, since his flight tests utilized the identical airframe and components minus 

the sonar sensor [5]. 

1.4 Justification 

In the current fiscal environment, it is important to remain cost conscious and to 

design systems that allow the greatest flexibility in the operational environment. With the 

reduction in manpower, the Air Force must come up with new ways of multiplying the 

force. According to the former Air Force Chief of Staff, Gen Mark Welsh, “Virtually 



4 

every mission area faces critical manning shortages… we have got to figure out different 

ways of using our people in a more efficient way or we will wear them out. And if we 

lose them, we lose everything" [6]. The Air Force is currently 41% smaller than it was 

during the first gulf war, but has increasing responsibilities [6]. 

UAV swarms allow a group of low cost, autonomous vehicles to work together as 

a cohesive unit to accomplish a single task or multiple tasks. Using this teamwork, the 

swarm can efficiently and more effectively accomplish the mission. According to the 

Department of Defense’s (DoD) Unmanned Systems Integrated Roadmap, “Operating in 

swarms of ‘intelligent munitions’ weapons…can autonomously search for and destroy 

critical mobile targets while aiming over a wide combat area” [7]. The DOD has realized 

the importance of groups of unmanned systems cooperatively working together towards a 

common goal and plans to incorporate this technology into future systems [7]. 

1.5 Scope 

 This research is built off of Jeremy Gray’s thesis, Design and Implementation of a 

Unified Command and Control Architecture for Multiple Cooperative Unmanned 

Vehicles Utilizing Commercial Off the Shelf Components, by adding onboard sonar 

sensors to the follower vehicle [5]. The addition of the onboard sonar sensors allows the 

follower UAV to sense the location of the lead vehicle, giving it greater situational 

awareness, and allowing it to autonomously correct for position errors.  

 The onboard sensors were limited to a single sonar and the algorithm was only 

modified to incorporate the addition of the sonar sensor. This allowed the effect of the 

sonar sensor to be directly compared to the system architecture without the onboard 



5 

sonar.  Further, all test UAVs were equipped with Pixhawk autopilots, chosen since it is a 

COTS, low cost, open source, autopilot. The Pixhawk allows for software manipulation 

through Python scripting, which can be run either directly in the ground station (Mission 

Planner) graphical user interface (GUI) or through various command prompt based 

programs (MAVProxy and DroneKit).  

 All flight tests were limited to only two unmanned vehicles, one leader and one 

follower. Flight tests were conducted using quadrotor aircraft.  Quadrotor UAVs were 

selected since they allow the test to be slowed down or even paused by commanding the 

quadrotors to hover in place. The choice of rotary platforms reduced the risk of the 

vehicles colliding during flight tests.  

1.6 Methodology 

 A literature search was conducted to determine the appropriate type of sensor as 

well as the sensor model to be used in this effort. A sonar sensor was selected based on 

the size, weight, power consumption, and the ease of integration with the Pixhawk 

autopilot. The flight control algorithm developed by Jeremy Gray was modified to be 

used with DroneKit [5]. The sonar algorithm was run directly on Mission Planner, 

separate from Gray’s algorithm.  

 A series of flight tests were conducted to analyze the effect of using the onboard 

sensor during formation flights with two vehicles.  The lead UAV flew a series of known 

flight paths via a way point pattern while the follower UAV was commanded to follow 

the lead UAV at a set distance. Flight data was collected, including GPS position, 



6 

altitude, and airspeed on both aircraft during the duration of all flight test. Additionally, 

the sonar data was collected on the follower aircraft.  

 A root mean square error analysis was run on the data to determine the separation 

distance error. This error was then compared to previous formation flights to determine 

the effect of the sonar sensor.  

1.7 Research Questions 

The research questions that this investigation attempts to answer are listed below. 

• What onboard sensors are available with low weight and low power consumption  

for use in UAV swarms? 

• What swarm algorithm modifications are required to incorporate onboard  

sensing?  

• How are the onboard sensors integrated with the Pixhawk autopilot?  
 

• How can the Pixhawk autopilot take advantage of the onboard sensor data? 
 

• How much can onboard sensors reduce required offset and desired separation  

distance errors? 

1.8 Materials/Equipment 

This research required multiple quadrotor UAVs, multiple 3D Robotics telemetry 

radios, sonar sensors, flight test approval, and range time to conduct flight testing. The 

required equipment is outlined in detail below. 

The two COTS quadrotors that this research used where the X-8s, manufactured 

by 3D Robotics. These quadrotors have been used extensively by the Air Force Institute 

of Technology and are a proven testing platform. A detailed description of these 

quadrotors can be found in chapter III.  



7 

 Two Pixhawk autopilots were required for this research, one for each quadrotor. 

The use of the Pixhawk autopilot allowed for seamless integration with the sonar sensor. 

A description of the Pixhawk can be found in chapter II, with specific implementation 

details in chapter III.  

 Four sonar sensors were tested in this research to determine the sensor that 

produced the best balance of accuracy, distance, and beam width. All sonar sensors were 

manufactured by Maxtronics and the sensor model numbers tested were the MB 1202, 

MB1260, MB1240, and MB 1020. The MB 1202 was selected after all ground testing 

was completed. A description of the Maxtronics sonar can be found in chapter II and 

chapter III. 

1.9 Thesis Summary 

 This section describes the other chapters of this thesis. In the next chapter, an 

extensive literature review was completed to understand the current state of formation 

flight research and to explore available sensors. Chapter III outlines the system 

architecture and describes the algorithms used and how they are incorporated into the 

system. Chapter IV analyzes the results of this research and compares these results to 

previous flight tests conducted without the use of sonar sensors.  Finally, chapter V states 

the conclusion of this research and recommends future work.  



8 

II. Literature Review 

2.1 Chapter 2 Overview 

The DoD is investing heavily into Unmanned Aerial Vehicle (UAV) formation 

flight and swarm technology. Swarms of low cost, attritable, autonomous vehicles, 

working together as a cohesive unit, can more efficiently accomplish a task or mission 

than a single, high value, asset. With the Air Force being undermanned and with more 

responsibility than ever, the DoD must push to accomplish its mission more efficiently 

and at a lower cost [6]. The use of low cost, commercial off the shelf (COTS) 

components, could achieve this objective. COTS components currently used to architect 

UAV formation flights results in insufficient position accuracy of the UAVs in the 

formation. This inaccuracy in position negates many of the positive effects and uses of 

close formation flying. The literature review outlines previous work, and covers the 

following subject areas in order to understand the current state of research: 

• Swarm and Formation Flight Algorithms 

• Onboard Sensors  

• Overview of Pixhawk Autopilot and Ground Station 

2.2 Swarming and Formation Flight Algorithms 

Before we analyze the efficiency of a swarm algorithm we must first understand some 

basic rules about swarm behavior:  “Rules must be drawn together in order for an agent 

or computer to accomplish a coherent response” [8]. Craig Reynolds is known for 

developing the three basic laws governing flocking behavior [9]. These rules are collision 

avoidance, velocity matching, and flock centering [9]. Flocking and formation flight 



9 

algorithm research has been conducted at the Air Force Institute of Technology (AFIT) 

by manipulating these three basic rules. Both Kaiser and Lambach developed algorithms 

by modifying these basic rules for use in UAV formations flight [10], [11]. In 2007, 

Nowak, Price, and Lamont from AFIT, expanded on Reynold’s original rules and 

developed a simulation called SWARMFARE to evaluate behaviors of autonomous 

control [8], [9]. The rules they utilized are: 

• Flat Align – vector align with neighbors 

• Target Orbit – orbit target at safe distance 

• Cluster range towards - cohesion 

• Cluster Range away - separation 

• Attract – towards center of mass of all targets 

• Weighted Attract – towards closest target 

• Target Repel – repel if with 90% of UAV sensor range 

• Weighted Target Repel – repulsion based on proximity to target 

• Evade – collision detection and avoidance 

• Obstacle Avoidance 

By applying different weights to each of these rules, the behavior of the swarm can be 

modified or altered to achieve the appropriate response for the mission [8]. 

As shown in the rules, some issues with swarming include the swarm agents getting 

too close together (cohesion), too far apart (separation) for their sensors, or the creation 

of an articulation point. An articulation point is most easily described as a single point 

failure. This occurs when a single agent is the link between two larger masses of the 



10 

swarm. If this single agent loses contact with either half of the swarm, then the swarm 

will be separated. Figure 1 visualizes an articulation point. 

 

Figure 1. Articulation Point [13] 

Seoung and MckLurkin developed a mode switching algorithm that uses network 

sensing to detect the health of the swarm. This algorithm changes the weights on the rules 

based on the vulnerability of the swarm.  If all is well, the swarm will flock in the same 

direction (Flat Align). If an articulation point develops, the swarm will cluster to 

eliminate the Articulation Point. Figure 2 shows the resulting swarm configuration after 

being in a vulnerable state both with and without mode switching. The three 

configurations on the left are without mode switching, the three on the right are with 

mode switching. The mode switching allowed the swarms to recover from a vulnerable 

state [13]. 



11 

 

Figure 2.Comparison of swarm in vulnerable states without (left) and with (right) 

mode switching [13] 

Seoung and MckLurkin validated these simulation results using six robots (Figure 3). 

Again the top row (a1-a6) is without the mode switching algorithm whereas the bottom 

row (b1-b6) is with the mode switching algorithm [13].  

 

Figure 3. Simulation Validation Using Sic Robots[13] 

This work showed the importance of having an algorithm that is dynamic and can change 

based on the changing environment of the swarm.  



12 

A new bio-inspired pigeon algorithm has recently been developed by Hao, Luo, 

and Duan [3].  The main tools that pigeons use to find their way are maps, compass, and 

landmarks. They can sense the magnetic field and use the sun to develop a mental map. 

Pigeons also recognize and remember landmarks to aid in their navigation. One issue that 

comes up with most swarming algorithms is premature convergence. The swarm can get 

too clustered together reducing the effectiveness of certain missions. The pigeon 

algorithm has been modified to reduce the clustering. The modified pigeon inspired 

algorithm produces a subpopulation of superior position pigeons for the others to track 

[3]. This modified pigeon algorithm is depicted in Figure 4. 

 

Figure 4. Modified Pigeon Inspired Algorithm [3] 

The pigeon algorithm was just one of many algorithms that were studied in this 

research. There are numerous swarm algorithms in existence and more being 

continuously developed. To generate the most robust swarm, it is necessary to have an 



13 

algorithm that can react to the instantaneous health of the swarm and dynamically change 

its priorities to keep the swarm operating as one cohesive and effective unit. 

 Through the present research, it was discovered that the majority of swarm and 

formation flight algorithms are only simulated, not flight tested, and include major 

assumptions. There are numerous recent articles on formation flight algorithms [14], [15], 

[16]. Each article incorporates a different approach to keeping the UAVs aligned in the 

formation. What these articles lack is real world flight testing. They mostly employ 

simulated environments to test their formation flight algorithms; the simulations 

incorporate major assumptions which are not in line with current technology limitations. 

For instance, in one formation flight conference paper, the assumption was used that all 

vehicles in the formation could communicate with each other [16]. In another article, it 

was assumed that all vehicles had “good” [14] onboard computing power. These 

formation flight architectures and algorithms were all impressive, just not validated with 

real world flight test. 

  With the numerous swarm and close formation flight algorithms being developed 

and simulated, only one seems to be flight tested. While other algorithms have been 

tested in indoor controlled ranges, it is only the leader-follower algorithm that is being 

flight tested out in the real environment: “The advantage of the ‘leader-follower’ 

approach lies in its conceptual simplicity, where the formation flight problem is reduced 

to a set of tracking problems that can be analyzed and solved using standard control 

techniques” [2].  The leader-follower approach requires hardware that is already flown on 

UAVs, the global positioning system (GPS) receiver, and an onboard inertial 



14 

measurement unit (IMU). In its basic form, the leader-follower approach does not require 

extra sensors or computing power.  

 In August 2015, the Advanced Robotic Systems Engineering Laboratory 

(ARSENL) from the Navy Postgraduate School completed a then world record swarm of 

50 UAVs using the leader-follower algorithm [17]. This test utilized 2 mini swarms of 25 

UAVs each, with 1 UAV designated the leader of each mini swarm. The leaders flew at 

the highest altitude of each swarm with each of its 24 followers spaced at 15m increments 

below to ensure no midair collisions. This entire 50 UAV swarm was controlled by a 

single ground station operator [17]. This test demonstrated the utility and scalability of 

the leader-follower scheme. 

In Gray’s research, a formation flight algorithm was developed by capturing the 

lead UAVs telemetry (GPS position, ground course vector, and ground speed), computing 

a follower vehicle waypoint, and sending this new waypoint to the follower UAV.  In the 

computation of the follower’s waypoint, the following variables could be adjusted: 

• rOffset: radial distance from the desired follower position to the leader vehicle's 

position 

• ƟOffset: angular offset from the leader's ground course vector 

• L1: forward offset along the leader's ground course vector 

• ƟGC: ground course angle of the leader relative to north 

All of these variables are depicted in Figure 5. 



15 

 

Figure 5. Follower Commanded Position Calculation Method [5] 

 In Gray’s architecture, the data from the leader is transmitted to the ground 

station, where the algorithm calculates the desired follower’s position, prior to this new 

position being sent to the follower. One factor affecting the accuracy of the follower 

position is the latency of this command and control architecture. This latency in Gray’s 

test was measured to be approximately 0.46s. For formation flights using slower moving 

vehicles (quad rotors), the communication latency is less of a factor than it is on faster 

moving (fixed wing) vehicles. This can be seen directly in the average positon error of 

3.1 meters for the quadrotor tests and 130.7 meters for the fixed wing tests [5]. 

 Another factor affecting the accuracy of the follower position is the lack of 

feedback. The follower UAV does not know if it is in the correct position and neither 



16 

vehicle airspeed nor groundspeed were variables that were controlled in Gray’s formation 

flight algorithm [5]. 

2.3 Onboard Sensors 

Inter-vehicle communication also plays an important role in the fidelity of swarm 

behavior.  By having the UAVs in the swarm communicate directly with each other, the 

latency of commands is significantly reduced compared to sending all communications 

signals routed through the ground station. The behavior and formation of the swarm 

needs to be guided by individual agent’s reactions with its environment [8]. This is where 

onboard sensing comes into play. For a UAV to react with its environment, it must first 

be able to sense and understand its environment.  

 For a swarm to stay organized, the individual UAVs need to have the ability to 

sense and react to their environment.  They need to know their distance from other 

aircraft in the swarm and from potential hazards. Some common sensors used on UAVs 

include optical, sonar, and light detecting and ranging (LiDAR).  

 Optical sensors offer several advantages including low weight and power 

consumption, but there are a few key disadvantages. Optical sensors can easily detect an 

object in the clear sky since the contrast between the object and the sky is great. 

However, on an overcast day or when the object is below the horizon, optical sensors 

have a harder time detecting the object. Perhaps the greatest disadvantage to the optical 

sensor is determining the distance to the object [18]. Without knowing the size of the 

object, the distance to the object cannot be determined. A work-around may exist for 



17 

swarms with all the same size aircraft, but the distance measurement will still not be 

accurate.  

Sonar sensors are another way to accurately measure distance. Sonar sensors are 

an extremely popular choice for measuring distance since they are cheap, robust, and 

accurate. Sonar sensors work by emitting a pulse and then measuring the time it takes for 

the echo to return to the sensor [19].  Sonar sensors are available in a variety of beam 

widths and detection distances. In addition, the open source autopilot (Pixhawk) that this 

research used, already has integration documentation for these simple sensors. This 

facilitated sensor integration.  

LiDAR sensors, like sonar, can also accurately measure distance. LiDAR sensors 

work by pulsing a laser at high frequency and measuring the time it takes for the light to 

be reflected back [20]. This is much like a sonar sensor, but light is used versus sound. 

One of the advantages of LiDAR is the resolution. A scanning or flash LiDAR can create 

high resolution contour maps of terrain. The disadvantage of LiDAR, for the application 

of this research, is that is has a narrow beam and would need to be pointed precisely at 

the lead UAV to get a return signal.  

Each sensor was then compared based on a list of important factors to determine 

the appropriate sensor. These categories are: Cost, Field of View, Detection Distance, 

Distance Accuracy, and ease of Pixhawk Integration. The results of this sensor 

comparison are displayed in Table 1.  

 



18 

Table 1. Sensor Comparison 

Sensor Comparison 

  
Cost 

Field 
of 

View 

Detection 
Distance 

Distance 
Accuracy 

Pixhawk 
Integration 

Optical + + + - - 
Sonar + + - + + 
Lidar - - + + + 

 

2.4 Pixhawk Autopilot 

 The Pixhawk autopilot is an open source autopilot that allows any user to 

download and modify the source code or run Python scripts in conjunction with the 

ground station. Pixhawk utilizes Mission Planner (other software options are also 

available) as the ground station graphical user interface (GUI).  The Pixhawk also has a 

large user community with forums that allow for quick reference to any problems that 

may arise. The Pixhawk autopilot is designed to be plug and play. The basic set up for 

Pixhawk is shown in Figure 6. This figure illustrates basic layout of the Pixhawk system 

and describes how the components are connected to the autopilot. 



19 

 

Figure 6. Pixhawk Autopilot Basic Set Up [21] 

The Pixhawk auto pilot allows for the incorporation of sensors. The Pixhawk 

manual has existing procedures for connecting a sonar to the Pixhawk autopilot. The 

sensors can utilize either the analog to digital port (ADC) or the I2C port. Parameters 

must then be adjusted via Mission Planner in order to incorporate the use of the sensor. 

These parameters are RNGFND_PIN, RNGFND_MAX_CM, RNGFND_SCALING, and 



20 

RNGFND_TYPE [21].  Table 2 shows a brief description of each of these parameters. 

Once all parameters are set, the sensor voltage and distance can be read in the Mission 

Planner GUI or incorporated into custom Python scripts. 

Table 2. Sonar Parameters 

Parameter Description 
RNGFND_PIN Analog pin that rangefinder is connected to. 
RNGFND_MAX_CM Maximum distance rangefinder can reliably read 
RNGFND_SCALING Scaling factor between rangefinder reading and distance 
RNGFND_TYPE  Type of rangefinder device connected 
 

The Mission Planner GUI allows the user to easily incorporate custom scripts. In 

the lower left region of Mission Planner, there is a tab that permits the user to run Python 

scripts. This allows easy integration of the custom scripts with Mission Planner and 

allows the user to read any of the numerous autopilot variables or set the control 

parameters to a desired state or position. A complete list of the variable names and 

example code is located in the user manual for Mission Planner and are defined by the 

MAVLink protocol [22].   An example screen shot of the Mission Planner GUI is shown 

in Figure 7. This screen shot illustrates the standard layout of the GUI.  The heads up 

display with all flight data is located in the top left. The moving map, that displays the 

vehicles current position and way points, is on the right side of the screen. Also, a list of 

tabs can be seen on the bottom left hand side of the screen. The tab, titled “Scripts”, is 

used to load custom Python scripts.   



21 

 

Figure 7. Mission Planner GUI [23] 

2.5 Conclusion 

 Chapter II reviewed swarm algorithms and the rules that guide them. Also, an 

overview of applicable sensors that are currently being used in UAV applications were 

explored. Finally, this chapter outlined the Pixhawk autopilot hardware, software, and its 

various interfaces to understand how system hardware components are incorporated.  

This literature search did not uncover any open-air flight tests conducted using a 

feedback loop with onboard sensors. In all open-air flight tests, the follower vehicle or 

vehicles were unaware of any position error. This research is targeting the gap that exist 

by combining low-cost formation flight architecture with low-cost onboard sensors to 

reduce formation flight position error.   

  



22 

III. Methodology 

3.1 Introduction 

This research aims to determine the feasibility of incorporating low-cost sonar 

sensors to aid in UAV formation flights using a COTS open source autopilot.   Currently 

the use of COTS components in UAV formation flights results in insufficient position 

accuracy of the aircraft in the formation [5]. This research uses sonar sensors on board 

the following UAV to increase the position accuracy of the follower UAV with respect to 

the leader.  The sonar sensors allow for an accurate distance measurement to be collected 

and then used in adjusting the follower UAV’s velocity. 

3.2 Overview 

In chapter II, this research reviewed swarm algorithms and the rules that guide 

them. Also, an overview of applicable sensors that are currently being used in UAV 

applications were explored. Finally, chapter II outlined the Pixhawk autopilot hardware, 

software, and its various interfaces.  

 By researching the literature, it was determined that the leader-follower algorithm 

is an appropriate algorithm to incorporate into this project. The other algorithms that were 

studied provide a higher degree of formation cohesion in simulation; however, major 

assumptions were made and are not practical to incorporate into the physical system 

architecture. The leader-follower algorithm only requires the leader’s current heading and 

global positions system (GPS) data to be passed to the following vehicle. This data is 

already calculated in the lead vehicle and can be passed to the follower vehicle via the 

ground station. 



23 

The Maxbotics MB1202 sonar sensor was selected after conducting background 

research on the various types of sensors that are available.  This sensor was selected for 

this project based on size, weight, power, accuracy, beam width, and ease of integration 

with the Pixhawk autopilot.  

3.3 Materials and Equipment 

This research required multiple UAVs, two quadrotors, Pixhawk autopilots, and 

sonar sensors.  The required equipment is outlined in this section. 

3.3.1 Unmanned Aerial Vehicles 

 The COTS quadrotors used in this research are the X8s manufactured by 3D 

Robotics. The X8 has an X frame configuration consisting of a total of 8 motors. Two 

X8s were used during flight testing for this research effort. One of the X8s used in flight 

testing is shown in Figure 8 and the X8 specifications are shown in Table 3.Table 3. 3D 

Robotics X8 Specifications 

 



24 

 

Figure 8. 3DR X8 Quadcopter 

Table 3. 3D Robotics X8 Specifications [24] 

Frame X 
Propellers APC 10X4.7  
Battery  4S 10000 mAh  
Weight (with battery)  7.7 lbs 
Aircraft dimensions 13.7 in x 20.1 in x 11.8 in  
Payload weight  < 2 lbs  
Flight time 14 min 

 

A block diagram of both the leader and follower X-8 components are shown in 

Figure 9 and Figure 10 respectively. These diagrams illustrate which components come 

stock on the X-8 and which were added for this research effort. Stock items are shown in 

blue, whereas the added components are highlighted in yellow. The lead vehicle required 

modifications to enhance the acoustic signature to give the follower’s sonar a greater 

effective range. This modification is discussed in detail in chapter 4, section 2.1. In 

addition, the lead vehicle was fitted with an extra modem to communicate with a backup 



25 

ground station. It should be noted that this extra modem was not required for the 

formation flight architecture; it was required to satisfy the flight safety review board. This 

extra modem allows the backup ground station operation to have situational awareness of 

the health of the lead UAV.  

 

Figure 9. Leader Block Diagram 

The follower UAV required the addition of the sensor package. The sensor package 

included the sonar, gimbal, and the algorithm to operate each of them. The sonar and 

gimbal set up is discussed, in detail, later in this chapter.  

 

Figure 10. Follower Block Diagram 



26 

3.3.2 Pixhawk Autopilot 

 The Pixhawk Autopilot is a low-cost ($250), COTS system developed and sold by 

3D Robotics. It is an open source platform that permits access to the source code. The 

ground station GUI, Mission Planner, contains simple interfaces to allow custom python 

scripts to be ran in conjunction with the standard autopilot software.  The Pixhawk 

Autopilot is shown in Figure 11. 

 

Figure 11. Pixhawk Autopilot [21] 

3.3.3 Sonar Sensor 

 The sonar sensor selected for this research effort was the MaxSonar MB1202 

(shown in Figure 12). This model sensor was selected due to its wide beam width and 

through ground testing proved to give a consistent return on an X8 quad out to 4.5 

meters. This sensor also incorporates the use of the I2C communication protocol which 

allowed seamless integration with the Pixhawk Autopilot. 



27 

 

Figure 12. I2CXL-MaxSonar®- EZ™ Series MB1202 [25] 

3.4 Procedures and Processes 

This section describes how the hardware and software work together to control 

the follower UAVs position and separation distance. Also, a description of the flight tests 

that were conducted and the analysis technique used to verify the system performance is 

discussed in this section. This research project required a formation flight algorithm, a 

gimbal mounted sonar sensor and sensor control algorithm, an algorithm to control the 

Pixhawk autopilot’s response to the sonar input, flight test verification, and data analysis.   

3.4.1 Algorithm 

This research began with the algorithm developed by Gray as a baseline [5]. In 

Gray’s algorithm, the lead UAVs telemetry is transmitted down to the ground station, 

where the algorithm uses this data to calculate the follower UAVs new flight path. Once 

the new flight path is calculated, the algorithm sends a new way point to the follower 

UAV, which aligns the follower UAV correctly with the lead UAV. This new way point 

is set far enough ahead of the follower UAV that it never reaches the way point before 

the next update is sent from the ground station. This algorithm sends an updated way 



28 

point at a frequency of 8 Hz [5]. Since Gray’s code was written to work with MAVProxy, 

it had to be modified to work with the new developer software called DroneKit [5].  

With the modified Gray algorithm as the foundation, new code had to be written 

to incorporate the use of the follower UAV’s on board sonar sensor [5]. A detailed 

discussion of how the sensor is integrated both physically on the UAV and into the 

software will be discussed in later sections. This system architecture is graphically 

depicted in the operational view (OV-1). This OV-1 was modified from Gray to 

incorporate the sonar sensing capability of the follower UAV and is depicted in Figure 13 

[5].  

 

Figure 13. Modified OV-1 from Gray [5] 



29 

The communication architecture that was used in this research is detailed in the 

Department of Defense Architecture Framework (DoDAF) System Interface Description 

(SV-1) shown in Figure 14. 

  

 

Figure 14. SV-1 (System Interface Description) 

For the lead UAV, this architecture used two 900MHz telemetry radio links, 

utilizing both the telemetry 1 and telemetry 2 ports on the Pixhawk autopilot. The 

telemetry 1 port was connected to DroneKit on the ground station computer and 

communicates the leaders telemetry with the follower UAV’s instance of DroneKit. The 

telemetry 2 port was connected to Mission Planner on a backup ground station computer. 

This link was a safety requirement to allow a dedicated operator to monitor the health of 

the lead UAV, and if necessary provide control inputs. 



30 

The follower UAV utilized a single 900 MHz link to the main ground station 

computer. MAVProxy was then used to split this telemetry stream to the follower’s 

instance of DroneKit and Mission Planner. This instance of Dronekit was used to run the 

modified version of  Gray’s algorithm and communicate with the second instance of 

DroneKit [5]. Mission Planner was used to run the sonar algorithm script.  

Each of the 3 scripts, Leader, Follower, and Sonar, were run at different 

frequencies. The Follower script was run twice as fast as the Leader script. This was done 

to keep the leaders GPS points from stacking up in the UDP. The Sonar script was run at 

2.2 Hz. This frequency allowed the sonar adequate time to take the 10 sonar readings 

with a 50ms pause between each reading. Table 4 shows the 3 scripts with their specific 

control loop frequencies. 

Table 4. Control Loop Frequencies 

 

3.4.2 Sonar Sensor Mounting  

The sonar is mounted on the follower UAV and is set up on a 2 axis gimbal. The 

gimbal set up allows the sonar to search for the lead UAV. With the dynamic nature of 

flight, compounded with the error associated with GPS and the beam width of the sonar 

sensor, it was necessary to develop a way to have the sonar search the area in front of the 

UAV. This set up is shown in Figure 15.  

Script Frequency (Hz)
Leader 4
Follower 8
Sonar 2.2

Control Loop Frequency 



31 

 

Figure 15. Sonar Gimbal Set Up 

When the sonar sensor is receiving a return from the lead UAV, the gimbal is stationary. 

It is only when the sensor fails to receive a return does the gimbal activate. When no 

return is received, the gimbal begins a figure 8 search pattern. During this search, the 

algorithm does not command Pixhawk to adjust the velocity of the UAV. This figure 8 

search pattern continues until the sonar receives a return. Once a return is received, the 

gimbal stops moving, holds its current position, and the Pixhawk begins adjusting the 

UAV velocity accordingly.  

 The gimbal figure 8 search pattern consist of 12 points. Each of these 12 points is 

reached by commanding a specific pulse width for both the pan and tilt gimbal servos. 

This search pattern is described graphically in Figure 16. Each point, represented by a 



32 

star, is the position that the gimbal stops to allow the sonar to take a reading. Once the 

gimbal hits point 12, the pattern repeats.  

 

Figure 16. Gimbal Figure 8 Search Pattern 

 The gimbal allowed the sonar coverage areas to be increase by 43%. This increase 

in coverage area is shown in Figure 17. The green circle represents the sonar’s field of 

view at any given time. The orange area represents the field of view that is covered by 

gimballing the sonar. The field of view was restricted to this orange area due to the 

location of the gimbal on the X8. This restriction ensured that the sonar was not affected 

by X8 airframe or propellers.  



33 

 

Figure 17. Sonar Coverage Area 

3.4.3 Sonar Algorithm and Pixhawk Autopilot Response 

The Pixhawk Autopilot monitors the reading from the sonar sensor, and based on the 

reading, it responds by controlling the airspeed or groundspeed of the follower UAV. The 

Pixhawk autopilot response to the sonar sensor input was divided into three basic 

possibilities. These three possibilities are: 1) attract, 2) monitor, and 3) repel. When the 

sonar sensor indicates that the UAV is too far from the leader, the Pixhawk commands 

the UAV to increase velocity (1. Attract).  When the sonar senor indicates that the 

following UAV is within a specified range from the leader, the Pixhawk maintains the 

current velocity (2. Monitor). When the sonar sensor indicates that the UAV is too close, 

the Pixhawk commands the UAV to decrease velocity (3. Repel). This algorithm is 

depicted in Figure 18.   



34 

 

Figure 18. Pixhawk Response Algorithm 

The idea for this algorithm came from the work of Pendelton and Goodrich who used 

Couzin’s flocking model [26], [27]. The levels at which the follower’s velocity is 

adjusted is a function of the distance follower is from the leader. The DoDAF 

Operational View, OV-5b, of the sonar algorithm can be seen in Figure 19. Figure 19 

shows the complete algorithm architecture with more detailed views of sections of the 

diagram shown in Figure 20, Figure 21, and Figure 22.  

  



35 

 

Figure 19. OV-5b (Sonar Algorithm Activity Diagram) 



36 

In Figure 20, the initiation of the script is depicted by the blue dot. Once the script 

is started, the algorithm sets an initial waypoint navigation speed of 2.5m/s, centers the 

gimbal, and sets the minimum and maximum allowable navigation speeds, 0m/s and 5m/s 

respectively. Once these variables are set, the control loop begins. The sonar reading is 

checked and if the reading is greater than 4.5m, the gimbal begins to step the sonar 

around a figure eight pattern, pausing at each step to check the sonar reading. This loop is 

exited once the sonar reading drops below 4.5m. 

 

Figure 20. OV-5b Detail View 1 

Now that the gimbal has adjusted the sonar to locate the leader, the gimbal is frozen in 

that position. Now an average of 10 sonar readings are taken over a 0.45 second period. 

These steps are shown in Figure 21.  



37 

 

Figure 21. OV-5b Detail View 2 

This average sonar reading falls into one of five categories, shown in Figure 22. The 

speed adjustments were divided into these categories, versus creating a linear function, 

due to the Pixhawk restricting the velocity adjustment resolution to 0.5m/s. After the 

appropriate speed adjustment is determined, a check is completed to ensure this 

adjustment will not cause the new navigation speed to fall outside of the set limits. If this 

desired change is within limits, the new commanded navigation speed is then written to 

the autopilot. If the new desired speed is outside the predefined limits, no change in 

navigation speed will be written to the autopilot. 



38 

 

Figure 22. OV-5b Detail View 3 

3.4.4 Flight test 

A series of flight tests were conducted at an altitude of 10m above the ground. The 

lead UAV was commanded to fly a basic rectangular waypoint pattern, shown in Figure 

23, with a velocity of 2 m/s. The followers route and velocity was controlled 

autonomously by the algorithms. 



39 

 

Figure 23. Leader Waypoint Pattern 

During all flight test, data was collected on the GPS position, altitude, and velocity of 

the leader, as well as the GPS position, altitude, velocity, sonar reading, and commanded 

velocity of the follower. This data was collected at a rate of 2Hz and was time stamped 

for comparison between the two vehicles. 

3.4.5 Data Analysis 

The data collected was used to determine the position error of the follower UAV. 

The analysis technique used was Root Mean Square Deviation (RMSD). RMSD allows 



40 

the average position error to be calculated by using the UAVs actual position and the 

UAVs desired position for each time step. The equation for RMSD is shown in    

equation 1.   

RMSD = �
� (𝑦𝑦(𝑡𝑡)−𝑦𝑦(𝑡𝑡_𝑜𝑜𝑜𝑜𝑜𝑜))2𝑛𝑛

𝑡𝑡=1
𝑛𝑛

      (1) 

In the RMSD equations, y(t) is the desired position of the follower UAV at that time, 

y(t_obs) is the actual position of the follower UAV at that time, and n is the number of 

data points. The RMSD results were then compared to the RMSD results from Gray’s test 

flights to determine if the incorporation of the sonar sensor decreased the observed 

position error of the follower UAV [5].  

3.5 Summary 

 This chapter detailed the materials and equipment needed for this research and 

discussed the procedures and processes used in order to conduct this research. Chapter 4 

will discuss the ground tests, flight tests, and analyze the results by comparing the 

position error of this research with the previous flight test conducted by Gray [5].  

  



41 

IV. Results and Analysis 

4.1 Chapter 4 Overview 

This chapter describes the ground tests that were accomplished, the multiple flight 

tests using two X-8 quadrotors, analyzes the position error results of each flight, and 

compares this research flight test results with the sonar, to the previous work without the 

sonar. 

4.2 Ground Tests 

 This section describes the ground tests that where conducted leading up to the 

flight tests. The ground tests included a sonar range test, a sonar algorithm test, and a 

guided position algorithm test.  

4.2.1 Sonar Range Test 

 Ground tests of the sonar was conducted to determine the max effective range of 

the sonar when getting the return from the lead X-8 quadrotor.  It was theorized from the 

beginning of this research that the sonar’s range would be reduced due to the limited 

amount of reflective surface area of the lead quadrotor. Three Maxbotics sonar models 

were tested during the ground test, the MB1020, MB1260, and MB1202. 

 The ground test was conducted by hanging an X-8 quadrotor from a tree 

approximately 5 feet off the ground. The quadrotor needed to be off the ground to ensure 

the sonar return was from the quadrotor itself and not the ground. Two variations of this 

test where conducted. The first was using the stock X-8 and the second test modified the 

X-8 by adding an additional 50 square inches of aluminum foil. These tests 



42 

configurations can be seen in Figure 24 and Figure 25 respectively. The ground test 

results are shown in Table 5. 

 

Figure 24. Stock X-8 Quadrotor 

 

Figure 25. Modified X-8 Quadrotor 



43 

Table 5. Sonar Ground Test Results 

Sonar MB 1020 MB 1202/1260 
Stock X8 1.6m 3.2m 
Modified X8  2.1m 4.6m 

 

The range at which the sonar could detect the X-8 was reduced from the published 

ranges for each model. This was due to the limited amount of reflective surface area on 

the X-8 and the published max ranges for the sonar are for man sized targets. The 

MB1020 was only able to see the stock X-8 out to 1.6m and the modified X-8 only 

increased the max effective range to 2.1m. This test verified that the MB1020 was not 

going to have sufficient range for this research effort. The stock X-8 allowed the 

MB1202 and 1260 sonars to have a max effective range of 3.2m, whereas the modified 

X-8 increased the sonars effective range to 4.6m. The MB1202 sonar was selected over 

the MB1260 because the MB1202 allows for I2C communication with the Pixhawk, 

whereas the MB1260 requires the use of the analog port. 

The aluminum foil increased the sonars range by 30.4%. Due to this increase in 

the sonars effective range, the lead X-8 quadrotor was modified for flight test by 

wrapping aluminum tape around the legs to increase the reflective surface area. This 

flight configuration can be seen in Figure 26. Ground test were not duplicated using the 

aluminum tape configuration, but flight test show that this configuration was comparable 

to the aluminum foil ground test. 

 



44 

 

Figure 26. Lead X-8 with Aluminum Tape 

4.2.2 Sonar Algorithm Ground Tests 

 Once the sonar algorithm was written, it was ground tested to ensure proper 

function. A ground test set up utilizing the sonar, gimbal, and the Pixhawk autopilot was 

built for this purpose. This set up can be seen in Figure 27. The verification of the 

algorithm was accomplished by systematically stepping through the response at various 

sonar readings. The ground test matrix is shown in Table 6.  

 

Figure 27. Sonar Algorithm Ground Test Set Up 



45 

Table 6. Sonar Algorithm Ground Test Matrix 

 

The output of each test was printed to the Mission Planner command screen for 

verification.  Screen shots of one of these tests can be seen in Figure 28 and Figure 29. 

From Figure 28, it can be seen that as the sonar reading changes, the new assigned trim 

airspeed is changed based on the distance. Figure 29 shows that the minimum airspeed 

Target Range Response
Gimbal Stationary
Average of 10 readings over 0.5 Seconds

2.95m <= Range < 3.05m                            
Continue to Monitor Sonar Range

2.75m <= Range < 2.95m                                 
1. Decrease Speed by 50cm/s                                           
2. Check to ensure new speed does not go 
negative                                                            
3. Write new airspeed to autopilot

Range < 2.75m                                                   
1. Decrease Speed by 100cm/s                                           
2. Check to ensure new speed does not go 
negative                                                                              
3. Write new airspeed to autopilot

Sonar <= 4.5 m (Target 
Within Range)

Move Gimbal in figure 8 pattern until Sonar 
<= 4.5 m

Sonar > 4.5 m (Target 
Out of Range)

Sonar Ground Test Matrix

Range >= 3.25m                                                    
1. Increase Speed by 100cm/s                           
2. Check to ensure new speed does not 
exceed max airspeed                                          
3. Write new airspeed to autopilot    

3.05m <= Range < 3.25m                                  
1. Increase Speed by 50cm/s                                           
2. Check to ensure new speed does not 
exceed max airspeed                                                            
3. Write new airspeed to autopilot



46 

check was working properly. Even though the sonar indicates the following vehicle is too 

close to the leader, the algorithm does not allow the vehicle to be slowed anymore.  

 

Figure 28. Sonar Algorithm Outputs 

 



47 

 

Figure 29. Sonar Minimum Airspeed 

 The sonar algorithm was verified again in a flight test to ensure when the sonar 

commanded a change in speed, the aircraft would respond. This flight test hovered one 

X-8 quadrotor, 2m off the ground, and commanded it to navigate towards a wall.  Once 

the sonar detected the wall, the algorithm was able to slow the X-8 quadrotor, avoiding a 

collision with the wall. The minimum speed was set to 0m/s for all flight test. Quadrotor 

aircraft have the ability to backup and this characteristic could prove useful is some test, 

but this was not required for this research since Gray’s guided point algorithm is a 

function of velocity [5].  If the leader stops, the follower will slow to a stop as well and 

position itself the desired distance behind the leader.  



48 

4.2.3 Guided Position Algorithm Ground Test 

 The guided position algorithm was originally developed by Jeremy Gray for use 

with MAVProxy, but had to be modified to be used with DroneKit [5]. Once the code 

modification was complete, it was ground tested in two phases to verify functionality. 

The first phase was a desktop test to ensure data was being passed from the leader to the 

follower. The second phase tested the accuracy of the new guided position commanded 

by the algorithm. 

For the first phase, two autopilots with their associated modems were connected 

to the ground station computer. The ground station operator then ran the code to split the 

follower’s telemetry using MAVProxy. Once the signal was split, the follower’s script 

was executed in DroneKit and the MissionPlanner was connected to the other signal. 

Finally, the leader’s script was run in the second instance of DroneKit. When the leader 

was connected to DroneKit, it began sending its telemetry to the follower and the 

follower began sending new commands to the autopilot. A screenshot of this test can be 

seen in Figure 30. The lower right command window is the leader’s DroneKit instance. 

The lower left command window is the follower’s DroneKit instance.  



49 

 

Figure 30. Phase 1 Guided Algorithm Ground Test 

 Phase two of the guided algorithm ground test was used to verify the follower’s 

script commanded the correct guided position based off the leader’s telemetry. To 

accomplish this test, the leader and follower X-8 quadrotors where placed outside. The 

follower algorithm was set to keep a 3m standoff from the leader. Once the algorithms 

were running, the lead quad was walked around an area as if it was flying a waypoint 

pattern. The leader’s position was then compared with the commanded guided position of 

the follower. These results can be seen in Figure 31. The commanded guided position had 

an average separation distance of 3.005m with a standard deviation of 0.279m. One 

would expect the commanded guided position to always be exactly 3m from the leader, 



50 

but this was not the case. This error is a function of the lag in the system, measured by 

Gray at 0.46s [5]. As expected, the largest error in the commanded guided position occurs 

when the lead UAV makes a sharp turn.  

 

Figure 31. Guided Position Ground Test 

4.3 Flight Tests and Results 

Multiple flight tests were conducted during the course of this research. The initial 

flight was flown with a 4m desired separation distance between the leader and follower to 

ensure the system was functioning properly. Once the system was proven, the remaining 

flight tests were flown with a 3m desired separation distance between the leader and 

follower. All flight tests were flown with a typical racetrack pattern at an altitude of 10m 

-84.18205

-84.182

-84.18195

-84.1819

-84.18185

-84.1818

39.68935 39.6894 39.68945 39.6895 39.68955 39.6896 39.68965 39.6897

Lo
ng

itu
de

Latitude

Guided Position Ground Test

Leader (log) follower(log)



51 

above ground level (AGL). The average separation distance, RMSD, and standard 

deviation of the follower X-8 is analyzed for each flight.  

4.3.1 Initial 4m Separation Flight Test 

 It was known from the beginning that the 4m flight test would be pushing the 

boundaries of what the sonar could detect. However, it was important to test the full 

system functionality at this greater separation distance to give the safety pilots more time 

to respond and keep the quadrotors from having a mid-air collision. No sonar data was 

collected during this flight due to the python script not saving that particular variable. It 

was initially thought the sonar data could be taken directly from the Pixhawk telemetry 

file for comparison; however, this procedure proved difficult to match the sonar output 

with the corresponding GPS position. This code was updated in later flight tests to 

include the sonar data and commanded way point navigation speed. It was visually noted 

that the sonar was getting a return from the leader at times during this 4m flight test. A 

picture taken during the 4m flight test can be seen in Figure 32. 

 

Figure 32. 4m Test Flight 



52 

 The results of the 4m flight test can be seen in Figure 33 and  

Table 7. Figure 33 is a plot of the GPS location of both the leader (blue) and the 

follower (orange). This plot visualizes the location of each X-8 during the flight and 

shows that the follower X-8 was indeed able to follow the leader. Note the undesired 

offset in the follower’s position when the leader was traveling on a North/South 

vector. This offset was not initially noticed during the 4m flight test, but was 

recognized during the following 3m flight test and is discussed in that section.  

Table 7 displays the key results of this test. It was expected that the RSMD for this flight 

would be highest, since the sonar was not playing an active role during this test. 

 

Figure 33. GPS Track from 4m Flight Test 

-86.0094

-86.0093

-86.0092

-86.0091

-86.009

-86.0089

-86.0088

39.3436 39.3438 39.344 39.3442 39.3444 39.3446 39.3448 39.345

Lo
ng

itu
de

Latitude 

4m Flight Test

Leader Follower



53 

 

Table 7. 4m Flight Test Results 

4m Flight Test 
Average Separation Distance 7.67m 

RMSD 4.76m 
Standard Deviation 3.02m 

 

The X-8s were never in danger of a mid-air collision. With this successful test, the 

desired separation distance was reduced from 4m to 3m for the remainder of the flight 

tests to allow the sonar to influence the position of the follower X-8. 

4.3.2 3m Separation Flight Tests 

 Flying with a desired separation distance of 3m allowed the sonar to frequently 

calculate the distance the follower was from the leader resulting in constant velocity 

adjustments to keep the follower at the set separation distance. A series of flight tests 

were conducted at 3m. The initial 3m flight test uncovered a problem with the guided 

point algorithm. A picture of a 3m flight test can be seen in Figure 34.  

 

Figure 34. 3m Test Flight 



54 

4.3.2.1 Initial 3m Flight Test 

 The first flight test flown with a 3m desired separation distance uncovered a 

problem not noticed during the previous test or ground testing. The follower vehicle was 

positioned offset from the leader, but only when traveling North or South. When the 

leader was traveling East or West, the follower was tucked in correctly behind the leader. 

This phenomenon can be seen in the GPS plot of each vehicle shown in Figure 35.  

 

Figure 35. North/South Offsets 

This offset created two problems with the system architecture. The first issue was 

the safety pilot had to take control of the following vehicle frequently when the lead 

vehicle initiated a turn due to the fact that the lead vehicle would turn in front of or cut 

off the follower. The second issue that arose was that with the north/south offset, the 

sonar was not able to frequently detect the distance from the lead vehicle unless the 

-86.00935

-86.0093

-86.00925

-86.0092

-86.00915

-86.0091

-86.00905

-86.009

-86.00895

-86.0089

-86.00885

-86.0088

39.3436 39.3438 39.344 39.3442 39.3444 39.3446 39.3448 39.345

Lo
ng

itu
de

Latitude

3m Separation Distance with North/South Offsets

Leader (log) follower(log)



55 

vehicles were traveling east or west. Despite these challenges, the results shown in Table 

8, do show a decrease in the RMSD when compared to the 4m flight test. This is due to 

the fact that the sonar was able to adjust the velocity of the following X-8 on more 

occasions. 

Table 8 Initial 3m Flight Test 

Initial 3m Flight Test 
Average Separation Distance 6.51m 

RMSD 2.55m 
Standard Deviation 2.51m 

 

 Two other issues were also noted during this test flight. First, at times the follower 

X-8 would fly sideways behind the lead X-8. With the follower X-8 flying sideways, 

there was no chance for the front mounted sonar to measure the distance to the leader. 

The other problem noted was the lead X-8 was not holding the desired altitude of 10m. 

Randomly it would lose over a meter of altitude which put it out of the field of view of 

the follower’s sonar.  

The root cause of this North/South offset was discovered and corrected in the 

guided algorithm code. The error was in dealing with the way the offset angle was 

defined in Gray’s code [5]. The reference needed to be rotated by 90 degrees to make it 

relative to East. The reason this error only showed itself when traveling North or South 

was because for this research the offset angle was set at 0 degrees. In addition, a fresh 

compass calibration as well as a gain tuning flight was completed on both X-8s.   



56 

4.3.2.2 Final 3m Flight Test 

 With the guided point algorithm corrected and the other adjustments complete, the 

final 3m flight test was conducted. The GPS plot of this flight can be seen in Figure 36. 

From this figure, notice that the follower is now directly in line with the leader at all 

times throughout the flight. 

 

Figure 36. Final 3m Flight Test 

In Figure 36 it is impossible to graphically discern how close the follower is to the 

leader at any point during the flight. This is due to the 2hz frequency that the GPS 

position data was collected and plotted. In Figure 37, the frequency of the data displayed 

in Figure 36 was reduced to approximately one data point every 10 seconds and the 

distance between the two vehicles is displayed between the data points.  This reduction in 

the data rate allows for an easy visual comparison of the leader and follower’s position 

during the flight. From Figure 37, the follower was able to closely follow the leader and 

-84.204

-84.2038

-84.2036

-84.2034

-84.2032

-84.203

-84.2028

-84.2026

-84.2024

39.8097 39.8098 39.8099 39.81 39.8101 39.8102 39.8103 39.8104

Lo
ng

itu
de

Latitude

Final 3m Flight Test

Leader (log) follower(log)



57 

remained in line directly behind the leader to give the sonar the best chance at detecting 

the distance to the lead vehicle. 

 

Figure 37. Position at Matching Time 

 With the follower now directly behind the leader, the follower’s sonar was able to 

more reliably detect the distance from the lead X-8. The raw sonar data from this flight is 

shown in Figure 38. The sonar defaults to the value of 7.6m when no signal return is 

detected and therefore no distance is measured.  Any value below 7.6m, is the measured 

distance from the leader. From this figure, the sonar was able to detect the distance from 

the lead X-8 throughout the flight.  

-84.204

-84.2038

-84.2036

-84.2034

-84.2032

-84.203

-84.2028

-84.2026

-84.2024

39.8097 39.8098 39.8099 39.81 39.8101 39.8102 39.8103 39.8104

Lo
ng

itu
de

Latitude

Position at Matching Time
(Separation Distance in meters)

Leader (log) follower(log)

2.94

3.12

3.21

2.78
3.61

2.97

3.86

3.32

3.18

3.652.55

3.62



58 

 

Figure 38. Raw Sonar Data 

 Due to the ability of the sonar to measure the distance the follower was from the 

leader, the sonar algorithm was able to adjust the follower’s velocity in an attempt to 

maintain the desired separation distance of 3m. This adjustment in the follower’s velocity 

is shown in Figure 39 and Figure 40. In these figures, the blue-dashed line is the 

commanded way point nav speed that is adjusted by the sonar. The red line is the actual 

ground velocity of the follower vehicle. From these plots, by adjusting the way point nav 

speed of the follower vehicle, the sonar algorithm is able to modify the velocity of the 

follower vehicle to maintain the desired separation distance from the leader. It is also 

noted that the actual ground speed occasionally lags behind the commanded speed. This 

is caused by a couple factors. First, the follower vehicle is occasionally way point 

limited. This occurs when the leader slows down and causes the desired follower position 

to be close enough to its current position that the follower reaches the desired waypoint 

and begins to slow to a hover prior to getting an updated desired GPS point. This 

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250

Di
st

an
ce

 (m
)

Time (s)

Sonar Measurement 



59 

phenomenon can be seen graphically in the middle of the plot on Figure 40. The second 

reason for this lag is internal to the autopilot. It was noted during testing that at times the 

follower would not adjust its velocity even though it had a commanded change that was 

written to the Pixhawk. It was as if the Pixhawk was busy with other tasks and would 

take a few seconds before it executed the commanded change in velocity. 

 

 

Figure 39. Waypoint Nav Speed versus Ground Speed (Plot 1) 

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

Ve
lo

ci
ty

 (m
/s

)

Time (2 Hz)

WP Nav Speed v Ground Speed (m/s)

WP Nav Speed Ground Speed



60 

 

Figure 40. Waypoint Nav Speed versus Ground Speed (Plot 2) 

The position error, is the difference in the actual separation distance from the desired 

separation distance. The follower’s position error throughout the flight can be seen in 

Figure 41. This is the deviation from desired offset of 3m. The desired position error 

value is 0m; when the position error is positive the follower quad is too far from the 

leader and when the position error is negative, the follower is too close to the leader.  

  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

Ve
lo

ci
ty

 (m
/s

)

Time (2 Hz)

WP Nav Speed v Ground Speed (m/s)

WP Nav Speed Ground Speed



61 

 

Figure 41. Follower Position Error 

With the sonar now playing an active role in the system. The results were much 

improved over the previous flight tests. The RMSD was reduced by 56.5% from the 

initial 3m flight test and the average separation distance was reduced from 6.51m to 

3.08m. The results are shown in Table 9. 

Table 9 Final 3m Flight Test Results 

Final 3m Flight Test 
Average Separation Distance 3.08m 

Average Position Error 0.896m 
Standard Deviation 1.11m 

RMSD 1.11m 
 

With the system architecture functioning as designed, it was time to compare these flight 

test results with the flight test results accomplished by Gray [5]. 

-3

-2

-1

0

1

2

3

4

5
Er

ro
r (

m
)

Time

Position Error (m)



62 

4.4 Flight Test Results Comparison 

 The flight test results of this research were compared to the previous flight tests 

without onboard sensors to quantify how much the COTS sonar sensors increased the 

cohesion of the formation flight by reducing the follower’s position error. Since Gray’s 

flight tests use the same guided position algorithm, the same X-8 airframes, but no 

onboard sensor for real time distance error measurement, this assessment shows how 

position error was effected by incorporating the sonar sensor.  

For this evaluation, the position error from Gray’s flight with the least amount of 

position error was selected [5].  The complete results table from Gray’s work is shown in 

Table 10 [5]. This research used the distance error root mean square (DRMS) from test 2. 

Test 2 was selected because it had the lowest position error of the six tests that Gray 

completed using two X-8 quadrotors [5].  

Table 10 Gray's X-8 Quadrotor Results [5] 

 

For visual flight test comparison, Figure 42 displays the position error of both Gray’s 

flight and the 3m sonar flight [5]. The blue line is the position error of the follower X-8 

quad during Gray’s test, the red line in the position error of the follower X-8 quad during 



63 

the sonar test, the dashed black lines represent the mean position error of each flight test. 

Note that the desired position error is 0m for both tests. From this figure, Gray’s flight 

test resulted in a mean position error of 3.08m and was always too far away from the 

leader. At no time during Gray’s test was the position error negative, indicating that the 

follower was too close. The 3m sonar flight test resulted in a mean position error of 

0.89m.  

 

Figure 42. Position Error Comparison 

This research effort was able to reduce the RMSD by 37.3% and the average position 

error by 70.9% when compared to Gray’s flight test [5]. These results are tabulated in 

Table 11. 

Table 11. Flight Test Comparison 

  Gray Sonar 
% Error 

Reduced 
RMSD (m) 1.77 1.11 37.3 

Average Position Error (m) 3.08 0.896 70.9 
 



64 

V.  Conclusions and Recommendations 

5.1 Chapter Overview 

This chapter answers the initial research questions, discusses the system 

limitations, outlines the recommendations for future research, and finally explores what 

steps would be needed or what technology gaps exist in current COTS components to 

allow this low-cost system to be implemented. 

5.2 Research Questions Answered 

The research questions that this investigation initially set out to answer are listed 

and discussed in this section. 

 

• What onboard sensors are available with low weight and low power 

consumption for use in UAV swarms?  

Available sensors include optical, sonar, and light detecting and ranging 

(LiDAR). Each of these sensors have strengths and weakness that were discussed 

in detail in chapter 2, section 2.4. Sonar was chosen due to its wider beam width, 

and ease of integration with Pixhawk autopilot. This low power sonar was 

extremely limited in range. For this research, the sonar was only able to reliably 

detect the leader out to a distance of 4.5m. The sonar was extremely effective at 

close range, as seen in Figure 41, the sonar and algorithm never allowed the 

follower to get closer than 1m from the leader. Unfortunately, the sonar’s limited 

detection range allowed the leader to drift far away from the follower. At one 

point, the follower was just over 7m away from the leader. Since the sonar could 



65 

not detect the leader at these distances, no change in the follower’s velocity was 

commanded. Ideally the sensor range would need a to be doubled to allow the 

sensor algorithm adequate time to adjust the follower’s velocity. 

 

• What swarm algorithm modifications are required to incorporate onboard 

sensing?  

The onboard sensing algorithm was run separate from the guided positon 

algorithm directly in Mission Planner. This was done to allow the sonar algorithm 

to run at a higher frequency and permit the sonar to constantly be searching for 

the lead vehicle. This architecture required an extra script to be ran to control the 

sensor package subsystem. One limitation with this setup is that DroneKit would 

not run in conjunction with MissionPlanner. MavProxy was used to split the 

follower’s communication stream to DroneKit and MissionPlanner. Using 

MavProxy as the middle man, allowed DroneKit and MissionPlanner to run at the 

same time.  

 

• How are the onboard sensors integrated with the Pixhawk autopilot?  
 
The sonar can integrate directly with the Pixhawk either through the ADC 

(Analog Digital Converter) port or through the I2C port. For this research both the 

ADC and the I2C port were used during ground testing, but the I2C port was 

utilized for all flight test. This integration was straight forward. The 

MissionPlanner GUI has built in functionality to work directly the MaxSonar. 

 



66 

• How can the Pixhawk autopilot take advantage of the onboard sensor data? 

The Pixhawk used the onboard sensor (sonar) data to adjust the X-8s velocity in 

an attempt to keep it at the desired separation distance. The sonar range reading 

was divided into three sectors; attract, monitor, and repel. Each sector provided a 

different response for the Pixhawk.  This is discussed in detail in chapter 3, 

section 3.4.3. A limiting factor in this setup is that it is assumed that the follower 

is always directly behind the leader. Future iterations could use the gimbal 

position to get a vector to the leader and adjust more than just the follower’s 

velocity. This approach would require a sensor with a narrower beam width.  

 

• How much can onboard sensors reduce offset distances and desired 

separation distance errors? 

With the use of the sonar sensors, the UAVs where able to fly at the same altitude, 

which was not attempted in the previous flights conducted by Gray for fear of a 

midair collision. The use of the sonar reduced the RMSD position error by 37.3% 

when compared to the previous flight test conducted by Gray [5]. On average 

Gray’s position error was 3.08m, whereas the average position error for this 

research was just 0.896m, an improvement of 70.9%. This result was discussed in 

detail in section 5.2 of this chapter. Even with the limitations of this system, the 

onboard sensor demonstrated an improvement in the follower’s position error.  



67 

5.3 Recommendations for Future Research 

 There are many areas where this research can be further refined and developed. 

However, this research effort can most greatly be influenced in the following two areas: 

vehicle to vehicle communication and increasing the range of the onboard sensor.   

 One limiting factor of this research was the frequency at which the control loops 

could be run. The control loops for this research were limited to approximately 8 hz. A 

faster control loop frequency would lead to more precise navigation and could reduce 

position error, especially during turns. The lag associated with passing all the 

communications through the ground station could be reduced by allowing the vehicles to 

communicate directly with each other. This would require an additional, low cost, COTS, 

onboard processor, like a BeagleBone, on each vehicle.  

 The other limiting factor in this research was the sonar. The sonar had a max 

effective range of approximately 4.5m on the lead quadrotor. This meant that the vehicles 

had to be close together before the sonar could influence the formation. By increasing the 

max effective range of the onboard sensor, the control algorithm could more precisely 

regulate the separation distance, particularly when the closure rate is high or when the 

vehicles drifted apart. A more powerful sonar could be a viable solution. 

5.4 System Implications 

 This research provided a proof of concept that a low-cost solution for UAV 

formation flight and swarming is within reach with current COTS technology. This low-

cost COTS formation flight architecture could allow groups of small, attritable, UAVs to 

perform formation flights and swarming behavior. This particular architecture is suitable 



68 

for missions that allow or tolerate position errors of approximately one meter. To fully 

migrate this research architecture into the Air Force’s arsenal there are a few performance 

shortfalls that would need to be addressed.  The shortfalls include the sonar sensor, 

vehicle to vehicle communication, and GPS error. 

 For this architecture to be fully mission capable, a more robust sensor would be 

required. The greatest limiting factor of the sensor was the range it could accurately 

detect the lead UAV. The sonar sensor that was flown for this research effort was limited 

to a 4.5m standoff distance. Once the leader was beyond this distance, the sonar was 

unreliable. With the sensor being unreliable over 4.5m, no velocity changes were 

commanded during this time and thus the position error was not being corrected. The 

ideal sensor could detect the leader out to 10m and would have a wider beam width or 

use multiple sensors to allow the leader to be tracked no matter its position relative to the 

follower.  

 The position error of the follower vehicle was greatly influenced by the latency of 

the communication architecture. The system latency was measured by Gray to be 0.46s 

[5]. This latency was most noticeable when the leader completed a turn. By allowing the 

UAV’s to communicate directly with each other, the position error could be reduced in 

two ways. First, the leader’s GPS position would be more accurate. By the time the 

leader’s positon is transmitted to the ground station then analyzed to calculate the correct 

follower position, the leader is no longer in that position and the calculated follower 

position is inherently incorrect. This is shown graphically in Figure 31. The calculated 

desired guided position had a maximum error of 0.9m during a turn. Second, the control 

loop could be run at a higher frequency to allow for more accurate follower commanded 



69 

position. With the leader’s GPS position being more accurate and the control loop 

running at a higher frequency, the followers position error and standard deviation would 

be reduced. 

 In addition to the communication latency resulting in desired GPS position error, 

the GPS itself has error associated with it. Both the leader’s and the follower’s GPS 

sensor error contributes to the position error of the follower. A Real Time Kinematic 

(RTK) GPS solution could prove to improve the followers position by reducing the error 

associated with both the leader’s and follower’s GPS. Current low cost, COTS, RTK GPS 

solutions are not ready to be integrated into a formation flight or swarm architecture. 

Ground testing has shown that these GPS units work well in stationary environments, but 

quickly lose the RTK solution when one of the receivers is placed on a moving platform. 

Once this technology gap is closed, an RTK GPS solution could prove to be invaluable to 

low cost formation flight and swarming.   

Even with the limitations expressed in this section, this research did show that a 

formation flight or swarm architecture could be developed utilizing nothing but low-cost 

COTS components.  

5.5 Summary 

The objective of this research was to investigate the effects of onboard sensing on 

UAV formation flight cohesion by comparing flight test results with and without onboard 

sonar sensing capability.  

The guided algorithm developed by Gray along with his flight testing results were 

used in this comparison [5]. From these results, it can be concluded that the sonar was 



70 

successful in increasing the cohesion of the formation flight by reducing the RMSD by 

37.3% and the average position error by 70.9%. While this system is not perfect, this 

research did demonstrate that UAV formation and swarm cohesion can be improved 

using low cost, commercial off the shelf sonar sensors.  

 

  



71 

Bibliography 

[1] D. Lamothe, “Veil of secrecy lifted on Pentagon office planning ‘Avatar’ fighters 
and drone swarms,” The Washington Post, 2016. [Online]. Available: 
https://www.washingtonpost.com/news/checkpoint/wp/2016/03/08/inside-the-
secretive-pentagon-office-planning-skyborg-fighters-and-drone-swarms/. 

[2] Y. Gu, G. Campa, B. Seanor, S. Gururajan, and M. R. Napolitano, “Autonomous 
Formation Flight – Design and Experiments,” Aer. Veh., pp. 233–256, 2009. 

[3] R. Hao, D. Luo, and H. Duan, “Multiple UAVs mission assignment based on 
modified Pigeon-inspired optimization algorithm,” 2014 IEEE Chinese Guid. Navig. 
Control Conf. CGNCC 2014, pp. 2692–2697, 2015. 

[4] K. Osborn, “Swarming Mini-Drones: Inside the Pentagon’s Plan to Overwhelm 
Russian and Chinese Air Defenses,” The National Interest, 2016. [Online]. 
Available: http://nationalinterest.org/blog/the-buzz/swarming-mini-drones-
inside-the-pentagons-plan-overwhelm-16135. [Accessed: 14-Dec-2016]. 

[5] J. Gray, “Design and Implementation of a Unified Command and Control 
Architecture for Multiple Cooperative Unmanned Vehicles Utilizing Commercial 
Off the Shelf Components,” Air Force Institute of Technology, 2015. 

[6] S. Losey, “Gen. Mark Welsh sounds alarm on undermanned Air Force,” Air Force 
Times, 2015. [Online]. Available: 
http://www.airforcetimes.com/story/military/2015/12/01/welsh-sounds-alarm-
on-undermanned-air-force/76617202/. [Accessed: 15-Jul-2016]. 

[7] “Unmanned Systems Integrated Roadmap FY2013-2038,” 2013. 
[8] D. J. Nowak, I. Price, and G. B. Lamont, “Proceedings of the 2007 Winter 

Simulation Conference S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, 
and R. R. Barton, eds.,” pp. 1315–1323, 2007. 

[9] C. W. Reynolds, Flocks , Herds , and Schools : A Distributed Behavioral Model. 
1987. 

[10] J. N. Kaiser, “Effects of Dynamically Weighting Autonomous Rules In an 
Unmanned Aircraft System (UAS) Flocking Model.” 

[11] J. L. Lambach, “Integrating UAS Flocking Operations With Formation Drag.” 
[12] C. W. Reynolds, Z. Chao, L. Ming et al. “Outdoor flocking and formation flight with 

autonomous aerial robots,” … Robot. Syst. 2005.(IROS 2005). …, vol. 9, no. 5, pp. 
287–300, 2013. 

[13] S. K. Lee and J. McLurkin, “Distributed cohesive configuration control for swarm 
robots with boundary information and network sensing,” IEEE Int. Conf. Intell. 
Robot. Syst., no. Iros, pp. 1161–1167, 2014. 

[14] Z. Chao, L. Ming, Z. Shao-lei, and Z. Wen-guang, “Collision-free UAV formation 
flight control based on nonlinear MPC,” Int. Conf. Electron. Commun. Control, pp. 
1–18, 2011. 

[15] D. Luo, T. Zhou, and S. Wu, “Obstacle avoidance and formation regrouping 
strategy and control for UAV formation flight,” IEEE Int. Conf. Control Autom. 
ICCA, pp. 1921–1926, 2013. 



72 

[16] A. Kim, Seungkeun; Kim, Youdan; Tsourdos, “Optimized Behavioural UAV 
Formation Flight Controller Design,” in European Control Conference, 2009. 

[17] M. Clement, “From Zero to Fifty Planes in Twenty-Seven Minutes,” DIY Drones, 
2015. [Online]. Available: http://diydrones.com/profiles/blogs/from-zero-to-fifty-
planes-in-twenty-seven-minutes. [Accessed: 21-Jan-2016]. 

[18] A. Zarandy, T. Zsedrovits, B. Pencz, M. Nameth, and B. Vanek, “A novel algorithm 
for distant aircraft detection,” 2015 Int. Conf. Unmanned Aircr. Syst. ICUAS 2015, 
pp. 774–783, 2015. 

[19] N. Cen, K. Cheng, and B. Fidan, “Formation control of robotic swarms based on 
sonar sensing,” ISSNIP 2009 - Proc. 2009 5th Int. Conf. Intell. Sensors, Sens. 
Networks Inf. Process., pp. 31–36, 2009. 

[20] “How does LiDAR work? The science behind the technology,” 2016. [Online]. 
Available: http://www.lidar-uk.com/how-lidar-works/. [Accessed: 05-Aug-2016]. 

[21] Pixhawk Autopilot Quick Start Guide. 3D Robotics, 2014. 
[22] “Using Python Scripts in Mission Planner,” 2016. [Online]. Available: 

http://ardupilot.org/planner/docs/using-python-scripts-in-mission-planner.html. 
[Accessed: 30-Jun-2016]. 

[23] “Mission Planner,” 2016. [Online]. Available: 
http://ardupilot.org/planner/docs/mission-planner-overview.html. [Accessed: 05-
Aug-2016]. 

[24] “3DR X8-M Specifications,” p. 25. 
[25] “I2CXL - MaxSonar ® - EZTM Series,” 2012. 
[26] B. Pendleton and M. Goodrich, “Scalable Human Interaction with Robotic 

Swarms,” AIAA Infotech@aerosp. Conf., pp. 1–13, 2013. 
[27] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, “Collective 

memory and spatial sorting in animal groups.,” J. Theor. Biol., vol. 218, no. 1, pp. 
1–11, 2002. 

 

  



73 

Appendix A  

Sonar Script 

import MissionPlanner 
 
Script.ChangeParam('WPNAV_SPEED',250)               #Initializing with 2.5m/s 
NAV speed 
 
sonar = cs.sonarrange                                  # Getting first Sonar 
Reading 
#print 'Sonar Distance: %s' %sonar  
 
Script.SendRC(6,1380,True)                        #Centering gimbal 
Script.SendRC(7,1400,True) 
Script.Sleep(500) 
 
Minairspeedms = 0                                # Setting Min speed to 0 
TrimAirspeed = Script.GetParam ('WPNAV_SPEED')   #Getting paramters for NAV 
Speed 
Maxairspeedms = 5                                # Setting max speed to 5 
 
#print 'Max Airspeed (m/s): %s' %Maxairspeedms 
MaxAirspeed = Maxairspeedms * 100                  #Convert min/max airspeed to 
cm/s 
#print 'Original Trim Airspeed: %s' %TrimAirspeed     
#print 'Minimum Airspeed (m/s): %s' %Minairspeedms 
Minairspeed = Minairspeedms * 100  
 
while True: 
   sonar = cs.sonarrange 
    
   while (sonar >=4.5):    #Sonar Using Gimbal to Search 
    
      sonar = cs.sonarrange 
             
      if sonar >= 4.5:                   
         Script.SendRC(6,1330,True) 
         Script.SendRC(7,1400,True) 
         Script.Sleep(300) 
         sonar = cs.sonarrange 
      if sonar >= 4.5: 
         Script.SendRC(6,1330,True) 
         Script.SendRC(7,1500,True) 
         Script.Sleep(300) 
         sonar = cs.sonarrange 
      if sonar >= 4.5: 
         Script.SendRC(6,1380,True) 
         Script.SendRC(7,1500,True) 
         Script.Sleep(300) 
         sonar = cs.sonarrange 
      if sonar >= 4.5: 
         Script.SendRC(6,1400,True) 
         Script.SendRC(7,1500,True) 
         Script.Sleep(300) 
         sonar = cs.sonarrange 
      if sonar >= 4.5: 
         Script.SendRC(6,1400,True) 
         Script.SendRC(7,1400,True) 



74 

         Script.Sleep(300) 
         sonar = cs.sonarrange 
      if sonar >= 4.5: 
         Script.SendRC(6,1380,True) 
         Script.SendRC(7,1400,True) 
         Script.Sleep(300) 
         sonar = cs.sonarrange 
      if sonar >= 4.5: 
         Script.SendRC(6,1330,True) 
         Script.SendRC(7,1400,True) 
         Script.Sleep(300) 
         sonar = cs.sonarrange 
      if sonar >= 4.5: 
         Script.SendRC(6,1330,True) 
         Script.SendRC(7,1300,True) 
         Script.Sleep(300) 
         sonar = cs.sonarrange 
      if sonar >= 4.5: 
         Script.SendRC(6,1380,True) 
         Script.SendRC(7,1300,True) 
         Script.Sleep(300) 
         sonar = cs.sonarrange 
      if sonar >= 4.5: 
         Script.SendRC(6,1400,True) 
         Script.SendRC(7,1300,True) 
         Script.Sleep(300) 
         sonar = cs.sonarrange 
      if sonar >= 4.5: 
         Script.SendRC(6,1400,True) 
         Script.SendRC(7,1400,True) 
         Script.Sleep(300) 
         sonar = cs.sonarrange 
      if sonar >= 4.5: 
         Script.SendRC(6,1380,True) 
         Script.SendRC(7,1400,True) 
         Script.Sleep(300) 
         sonar = cs.sonarrange   
    
   #*******Sonar within range. Take avaerage of 10 readings over .45 seconds   
   if sonar < 4.5:                      
      sonar1 = cs.sonarrange 
      Script.Sleep(50) 
      sonar2 = cs.sonarrange 
      Script.Sleep(50) 
      sonar3 = cs.sonarrange 
      Script.Sleep(50) 
      sonar4 = cs.sonarrange 
      Script.Sleep(50) 
      sonar5 = cs.sonarrange 
      Script.Sleep(50) 
      sonar6 = cs.sonarrange 
      Script.Sleep(50) 
      sonar7 = cs.sonarrange 
      Script.Sleep(50) 
      sonar8 = cs.sonarrange 
      Script.Sleep(50) 
      sonar9 = cs.sonarrange 
      Script.Sleep(50) 
      sonar10 = cs.sonarrange 
          
      sonar = (sonar1 + sonar2 + sonar3 + sonar4 + sonar5 + sonar6 + sonar7 + 



75 

sonar8 + sonar9 + sonar10)/10  # Average Sonar reading over 0.25 seconds 
      print 'Sonar Average Distance: %s' %sonar   
       
   if sonar >= 3.25: 
      currenttrimairspeed = Script.GetParam ('WPNAV_SPEED') 
      newtrimairspeed = currenttrimairspeed + 100 
      #print 'New Airspeed: %s' %newtrimairspeed 
      if newtrimairspeed >= MaxAirspeed: 
         print 'Trim Airspeed is at Maximum' 
      if newtrimairspeed < MaxAirspeed: 
         Script.ChangeParam('WPNAV_SPEED',newtrimairspeed) 
         TrimAirspeed = Script.GetParam ('WPNAV_SPEED') 
         print 'New Assigned Trim Airspeed: %s' %TrimAirspeed 
          
   if 3.05<= sonar < 3.25: 
      currenttrimairspeed = Script.GetParam ('WPNAV_SPEED') 
      newtrimairspeed = currenttrimairspeed + 50 
      #print 'New Airspeed: %s' %newtrimairspeed 
      if newtrimairspeed >= MaxAirspeed: 
         print 'Trim Airspeed is at Maximum' 
      if newtrimairspeed < MaxAirspeed: 
         Script.ChangeParam('WPNAV_SPEED',newtrimairspeed) 
         TrimAirspeed = Script.GetParam ('WPNAV_SPEED') 
         print 'New Assigned Trim Airspeed: %s' %TrimAirspeed 
          
   if 2.95<= sonar < 3.05: 
      currenttrimairspeed = Script.GetParam ('WPNAV_SPEED') 
      newtrimairspeed = currenttrimairspeed 
      print 'New Airspeed: %s' %newtrimairspeed 
      Script.ChangeParam('WPNAV_SPEED',newtrimairspeed) 
      TrimAirspeed = Script.GetParam ('WPNAV_SPEED') 
      print 'Nav Speed Unchanged: %s' %TrimAirspeed 
    
   if 2.75 <= sonar < 2.95: 
      currenttrimairspeed = Script.GetParam ('WPNAV_SPEED') 
      newtrimairspeed = currenttrimairspeed - 50 
      #print 'New Airspeed: %s' %newtrimairspeed 
      if newtrimairspeed <= Minairspeed: 
         print 'Trim Airspeed is at Minimum' 
      if newtrimairspeed > Minairspeed: 
         Script.ChangeParam('WPNAV_SPEED',newtrimairspeed) 
         TrimAirspeed = Script.GetParam ('WPNAV_SPEED') 
         print 'New Assigned Trim Airspeed: %s' %TrimAirspeed 
          
   if sonar < 2.75: 
      currenttrimairspeed = Script.GetParam ('WPNAV_SPEED') 
      newtrimairspeed = currenttrimairspeed - 100 
      #print 'New Airspeed: %s' %newtrimairspeed 
      if newtrimairspeed <= Minairspeed: 
         print 'Trim Airspeed is at Minimum' 
      if newtrimairspeed > Minairspeed: 
         Script.ChangeParam('WPNAV_SPEED',newtrimairspeed) 
         TrimAirspeed = Script.GetParam ('WPNAV_SPEED') 
         print 'New Assigned Trim Airspeed: %s' %TrimAirspeed 

 

 



76 

Appendix B 

Follower Script 

#FlockingModeFollower Capt Robert McClanahan(Modified from Gray 2015 to Use 
Drone Kit) 
#   Gets location of leader vehicle and sets waypoints to make follower vehicle 
follow at 
#   a fixed offset distance 
# 
#   Prerequisits: 
#       Mavproxy Running to split data to Drone Kit and Mission Planner 
# 
#   Notes: 
#       for best results, update system time 
 
import socket 
import sys 
import math 
import time 
from datetime import datetime 
import re 
from numpy import matrix 
import numpy as np 
from LLA_ECEF_Convert import LLA_ECEF_Convert 
from multi_vehicle_toolbox import follower_pos 
from dronekit import connect, VehicleMode, LocationGlobalRelative, Command, 
mavutil 
 
'''INIT PARAMS''' 
#Follower offset parameters (relative to leader's body frame) 
off_l1_s=1      #L1 lead time constant [s] for forward offset waypoint 
off_r = 2       #radial distance [m] away from leader 
off_theta = 0   #angle (deg) from -x axis (out of tail), CCW is (+) rotation 
alt_agl_cmd=11  #alt agl [m] to be commanded, used in guided_pos 
 
#timing prarameters 
t_freq=8.0       #control loop frequency, must be faster than leader and float 
(0.0) 
freq_store=2.0    #frequency of storage of data to disk and must be float (0.0) 
freq_print=1    #frequency of print statements (try to reduce this) 
 
#other 
msg_size=128    #size of msg to be passed 
 
'''DRONEKIT INT''' 
v_follower = connect('127.0.0.1:14550', wait_ready=True)# Connect to follower 
vehicle in Dronekit via MavProxy Split 
 
print "Follower Vehicle Object Created" 
 
'''DATA FILE INIT''' 
timestr = time.strftime("%m-%d-%Y_%H-%M-%S")    #date-time for file name 
file_name='follower_gcs_tel_' + timestr         #file name appended with date 
time 
data_file = open(file_name, 'a')    #create txt doc to append to 
msg_data='%s %s %s' %(off_r,off_theta,off_l1_s) 
data_file.write(msg_data + '\n') 
print 'telemetry file open' 



77 

 
'''CONNECTION INIT''' 
#Setup TCP link with leader_server 
Port = 50005    # Port to TX/RX to/from leader_server 
IP = '127.0.0.1'      #Local Host IP 
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 
print 'socket created' 
s.bind((IP,Port))    # Connect socket 
print 'Bound to port ' + str(Port) 
 
'''Main Loop''' 
rc_ch=v_follower.channels         #Get Channel 5 Position 
t_write=0   #forces first write to occure on start 
t_print=0   #forces first print to occure on start 
#Current location is pos0, next location is pos1 
cmds = v_follower.commands 
cmds.download() 
cmds.wait_ready() 
 
print 'starting control loop' 
while True: 
    #time.sleep(.1) 
 
    try: 
        #get current time for sleep... 
        t1=time.time() 
 
        if rc_ch['5'] > 1200:   #MANUAL MODE FAIL SAFE, will not store data 
            v_follower.mode = VehicleMode("STABILIZE") 
            print 'Channel 5: %s' %rc_ch['5'] 
 
            if time.time() - t_print > 1/freq_print: 
                print "Follower Mode Set to Manual" + 
str(datetime.now().time()) 
 
                t_print=time.time() 
 
            time.sleep(0.01) 
 
        else: 
            print 'getting leader telem' 
            #read leader tel from udp port 
            tel_leader = s.recv(msg_size)   #get "lat(deg) lon(deg) alt(m) 
gc(rad) v(m/s)" 
 
            #manipulate leader tel to parse out lat,lon,alt,heading/gc,velocity 
            pattern = re.compile("[ ]")         #Data patern (data seperated by 
[ ] i.e space) 
            param = pattern.split(tel_leader)   #split data based on data 
patern 
 
            pos_leader = np.array([float(param[0]), 
float(param[1]),float(param[2])]) 
                                    #leader pos [lat(deg) lon(deg) alt(m)] 
            heading_l = np.rad2deg(float(param[3]))     #leader ground course 
(rad) 
            v_l = float(param[4])                       #leader velocity (m/s) 
 
            #calculate desired position 
            off_l1=off_l1_s*v_l     #forward offset dist. ( [m] = [s] * [m/s]) 
            pos1_f=follower_pos(off_r,off_theta,off_l1, 



78 

                                pos_leader,heading_l)   #pos1_f = [lat(deg) 
lon(deg) alt(m)] 
 
            #Set new follower guided point 
            guided_pos= LocationGlobalRelative(pos1_f[0],pos1_f[1]-
360,alt_agl_cmd)   #pos1_f[1]-360 
            #print 'guided position: %s' %guided_pos 
            if v_follower.mode != "GUIDED":     #if not already in guided...go 
guided 
                v_follower.mode = VehicleMode("GUIDED") 
 
            v_follower.simple_goto(guided_pos) #send guided point 
            cmds.upload() 
 
            #get telemetry information for storage 
            lat=str(v_follower.location.global_relative_frame.lat)        
#latitude (9 bytes CHECK) 
            lon=str(v_follower.location.global_relative_frame.lon)        
#longitude (9 bytes CHECK) 
            alt_asl = str(v_follower.location.global_relative_frame.alt)  
#altitude above sea level (6 bytes CHECK) 
            sonar = v_follower.rangefinder.distance         #Sonar reading 
            wpnav = v_follower.parameters['WPNAV_SPEED']    #WP Nav Speed 
            p=float(np.deg2rad(v_follower.attitude.pitch))  #pitch (rad) of 
vehicle relative to NEU frame 
            r=float(np.deg2rad(v_follower.attitude.roll))   #roll (rad) of 
vehicle relative to NEU frame 
            y=float(np.deg2rad(v_follower.attitude.yaw))    #yaw (rad) of 
vehicle relative to NEU frame 
            v_b= v_follower.velocity                #velocity in x dir relative 
to body (CHECK) 
 
            #determine gc relative to vehicle frame (NEU) 
            v_b=np.array([[v_b[0], v_b[1], v_b[2]]]) 
            c_r=np.cos(r);  s_r=np.sin(r) 
            c_p=np.cos(p);  s_p=np.sin(p) 
            c_y=np.cos(y);  s_y=np.sin(y) 
            R_v_b=np.array([    [c_p*c_y,               c_p*s_y,                
-s_p    ], 
                                [s_r*s_p*c_y-c_r*s_y,   s_r*s_p*s_y+c_r*c_y,    
s_r*c_p ], 
                                [c_r*s_p*c_y+s_r*s_y,   c_r*s_p*s_y-s_r*c_y,    
c_r*c_p ]   ]) 
                                #rotation transform from vehicle to body 
            v_v=np.dot(R_v_b.T,v_b.T)  #velocity vector relative to vehicle 
(NEU) frame 
            gc=np.arctan2( v_v[1],v_v[0] )  #ground course relative to NEU 
(CHECK) 
            v=np.linalg.norm(v_v)       #velocity of leader, used to calc L1 
            t_tel=time.time() 
 
            #if V is too slow use yaw as ground course 
            if v < 1: 
                gc= y 
            cmds.upload() 
 
            #build telemetry data str 
            tel_msg_raw ='%s , %s , %s , %s , %s , %s , %s , %s  , %s ,  %s' 
%(lat,lon,alt_asl,str(float(gc)),str(v), 
                                                     
str(pos1_f[0]),str(pos1_f[1]-360),str(pos1_f[2]), sonar, wpnav) 



79 

 
            #append data with unix time on a new line of data txt file 
            if time.time() - t_write > 1/freq_store: 
                msg_data='%s , %s' %(t_tel,tel_msg_raw) 
                data_file.write(msg_data + '\n') 
                t_write=time.time() 
 
            #print update message 
            if time.time() - t_print > 1/freq_print: 
                print 'cmd sent & telemetry stored: ' + 
str(datetime.now().time()) 
                t_print=time.time() 
 
            #determine sleep time 
            t2=time.time() 
            t_remaining= ( 1/t_freq ) - ( t2 - t1 ) 
            if t_remaining > 0:     #sleep for remainder of this control cycle 
                time.sleep(t_remaining) 
            else:                   #the operations in the while loop took too 
long 
                print 't_freq is too high' 
 
    except KeyboardInterrupt:   #only way to stop the ride 
        data_file.close() 
        break 
 
    except: 
        print "Unexpected error:", sys.exc_info()[0] 
        data_file.close() 
        break 
 
 
# exit 
s.close() 
print 'End of Script' 

  



80 

Appendix C 

Leader Script 

#FlockingModeLeader Capt Robert McClanahan(Modified from Gray 2015 to use Drone 
Kit) 
#   Gets location request from follower and gives the leaders location and 
heading 
# 
#   Prerequisits: 
#       Drone Kit Open 
# 
#   Notes: 
#       for best results, update system time 
 
import socket 
import sys 
from droneapi.lib import VehicleMode 
from droneapi.lib import Command 
from droneapi.lib import mavutil 
import numpy as np 
import math 
import time 
from datetime import datetime 
from LLA_ECEF_Convert import LLA_ECEF_Convert 
from multi_vehicle_toolbox import follower_pos 
from dronekit import connect, VehicleMode, Command, mavutil 
 
'''INIT PARAMS''' 
freq_control=4.0    #frequency of control loop, must be < follower, must be 
float (0.0) 
freq_store=2.0      #frequency of data storage, must be float (0.0) 
freq_print=1.0      #frequency of printed updates, must be float (0.0) 
msg_size=128        #size of msg to be passed 
 
'''DRONEKIT INIT''' 
v_leader = connect('com14', wait_ready=True, baud=57600)# Connect to lead 
vehicle 
 
print "Leader Vehicle Object Created" 
 
'''DATA FILE INIT''' 
timestr = time.strftime("%m-%d-%Y_%H-%M-%S")    #date-time for file name 
file_name='leader_gcs_tel_' + timestr         #file name appended with date 
time 
data_file = open(file_name, 'a')    #create txt doc to append to 
print 'telemetry file open' 
 
'''CONNECTION INIT''' 
#Setup UDP link with leader_server 
Port = 50005    # Port to TX/RX to/from follower_client   
IP = '127.0.0.1'      #Local Host IP 
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)   # Create TCP socket 
object 
print 'socket created' 
address=(IP,Port) 
 
 
'''Main LOOP''' 



81 

t_write=0   #forces first write to occure on start 
t_print=0 
print 'starting control loop' 
#Current location is loc0, next location is loc1 
 
while True: 
    try: 
        #get current time for sleep... 
        t1=time.time() 
         
        #get telemetry information 
        lat=str(v_leader.location.global_relative_frame.lat)                  
#latitude (deg) 
        lon=str(v_leader.location.global_relative_frame.lon)                  
#longitude (deg) 
        alt_asl = str(v_leader.location.global_relative_frame.alt)            
#altitude above sea level (m) 
        p=float(np.deg2rad(v_leader.attitude.pitch))    #pitch (rad) of vehicle 
relative to NEU frame 
        r=float(np.deg2rad(v_leader.attitude.roll))     #roll (rad) of vehicle 
relative to NEU frame 
        y=float(np.deg2rad(v_leader.attitude.yaw))      #yaw (rad) of vehicle 
relative to NEU frame 
        v_b=v_leader.velocity                           #velocity vectory (m/s) 
relative to body 
        t_tel=time.time()                               #time telemetry was 
recieved 
         
        #flush data to leader 
        v_leader.flush() 
         
        #determine gc relative to vehicle frame (NED) 
        v_b=np.array([[v_b[0], v_b[1], v_b[2]]]) 
        c_p=np.cos(p);  s_p=np.sin(p) 
        c_r=np.cos(r);  s_r=np.sin(r) 
        c_y=np.cos(y);  s_y=np.sin(y) 
        R_v_b=np.array([    [c_p*c_y,               c_p*s_y,                -
s_p    ], 
                            [s_r*s_p*c_y-c_r*s_y,   s_r*s_p*s_y+c_r*c_y,    
s_r*c_p ], 
                            [c_r*s_p*c_y+s_r*s_y,   c_r*s_p*s_y-s_r*c_y,    
c_r*c_p ]   ]) 
                            #rotation transform from vehicle to body 
        v_v=np.dot(R_v_b.T,v_b.T)   #velocity vector relative to vehicle (NED) 
frame 
        gc=np.arctan2( v_v[1],v_v[0] )    #ground course (rad) relative to 
North 
        v=np.linalg.norm(v_v)                   #velocity of leader, used to 
calc L1 
         
        #if V is too slow use yaw (rad) as ground course 
        if v < 0.25: 
            gc= y 
             
        #build telemetry msg to be a known length (msg_size) 
        tel_msg_raw ='%s %s %s %s %s' %(lat,lon,alt_asl,str(float(gc)),str(v))    
#build msg 
        tel_msg=msg_size*' '     
        if len(tel_msg_raw) < len(tel_msg):         #set msg size to known 
length 
            n_spaces=len(tel_msg)-len(tel_msg_raw) 



82 

            tel_msg=tel_msg_raw + n_spaces * ' ' 
        else: 
            print 'err: udp message exceeds length. Increase msg_size' 
            break 
 
        #send leader telemetry to follower over UDP 
        s.sendto(str(tel_msg),address)         
 
        #append data w/ unix time on new line of data txt file, if 1/freq_store 
has pased 
        if time.time() - t_write > 1/freq_store: 
            tel_msg_rawc = '%s , %s , %s , %s , %s' 
%(lat,lon,alt_asl,str(float(gc)),str(v)) 
            msg_data='%s , %s' %(t_tel,tel_msg_rawc) 
            data_file.write(msg_data + '\n') 
            t_write=time.time() 
 
        #print update message  
        if time.time() - t_print > 1/freq_print: 
            print 'telemetry sent & stored: ' + str(datetime.now().time()) 
            t_print=time.time() 
             
        #determine sleep time 
        t2=time.time() 
        t_remaining= ( 1/freq_control ) - ( t2 - t1 ) 
        if t_remaining > 0:     #sleep for remainder of this control cycle 
            time.sleep(t_remaining) 
        else:                   #the operations in the while loop took too long 
            print 'freq_control is too high' 
         
    except KeyboardInterrupt: #only way to stop the ride 
        data_file.close() 
        break 
 
    except: 
        print "Unexpected error:", sys.exc_info()[0] 
        data_file.close() 
        break 
         
# exit 
s.close() 
print 'End of Script' 

 

 

  



83 

Appendix D 

Multi-Vehicle Script 

''' 
multi_vehicle_toolbox.py 
    Calculations required for multi-vehicle operations 
        1) flocking follower pos calculation 
        2) comm relay relay vehicle midpoint pos calc 
''' 
 
import numpy as np 
from LLA_ECEF_Convert import LLA_ECEF_Convert 
 
def follower_pos(off_r,off_theta,off_l1,loc0_l,heading_l): 
    #function   description:    determines the next desired location of the 
follower 
    #                           vehicle in lat lon alt (LLA) 
    #Inputs:    off_r:          radial distance away from leader [m] 
    #           off_theta:      angle (deg) from -x axis (out of tail), CCW is 
(+) rotation 
    #           off_l1:         distance the guided point is placed forward of 
the desired 
    #                           follower location 
    #           loc0_l:         location of the leader at current incriment of 
time 
    #           heading_l:      heading of the leader at current incriment of 
time 
    #Outputs:   loc1_f:         current desired location of the follower 
 
 
    #Follower loc1 relative to leader body frame 
    off_theta+=180   #add 270 deg to make offset relative to east (+X axis for 
math) 
    off_theta=np.deg2rad(off_theta) 
    loc1_f= off_r*np.array([np.cos(off_theta),np.sin(off_theta),0]) + 
off_l1*np.array([1,0,0]) 
     
 
    #Follower loc1 relative to Local Level Frame (L, North-East-Down) frame 
            #Heading is negative because +rotation of pix is -rotation in NED 
frame 
    cos_h=np.cos(np.deg2rad(heading_l))  
    sin_h=np.sin(np.deg2rad(heading_l)) 
    R_BtoL=np.array([   [cos_h,     sin_h,  0], 
                        [-sin_h,    cos_h,  0], 
                        [0,         0,      1]  ])  #Rotation from body to 
local 
    loc1_f=np.dot(loc1_f,R_BtoL) 
    loc1_f=np.array([loc1_f[1], loc1_f[0], -loc1_f[2]])   #NED to ENU 
     
    #Follower loc1 from Local Level Frame (L, East-North-UP) to ECEF (E) 
    phi= np.deg2rad(loc0_l[0])      #latitude of leader 
    la= np.deg2rad(loc0_l[1])      #londitude of leader 
    sin_la= np.sin(la) 
    cos_la=np.cos(la) 
    sin_phi= np.sin(phi) 
    cos_phi=np.cos(phi) 
    R_LtoE=np.array([   [-sin_la,  -sin_phi*cos_la,    cos_phi*cos_la   ], 



84 

                        [cos_la,   -sin_phi*sin_la,    cos_phi*sin_la   ], 
                        [0,        cos_phi,            sin_phi          ]   ])  
#Rotation from local to ecef 
 
    
T_LtoE=LLA_ECEF_Convert(np.rad2deg(phi),np.rad2deg(la),loc0_l[2],'LLAtoECEF') 
    loc1_f= np.dot(R_LtoE,loc1_f) + T_LtoE.T 
 
 
    #Follower Location ECEF to lat lon alt (LLA) 
    loc1_f= LLA_ECEF_Convert(loc1_f[0], loc1_f[1], loc1_f[2], 'ECEFtoLLA') 
 
    return loc1_f 
 
def relay_pos(pos_gcs_llh,pos_rem_llh): 
    #function   description:    Calculates the midpoint between the GCS and 
remote vehicle 
    #                           to send the relay vehicle 
    # 
    #Inputs:    pos_gcs_llh:    pos of GCS in lat lon hae 
    #           pos_rem_llh:    pos of remote vehicle in lat lon hae 
    #            
    #Outputs:   pos_rel_lla:    calculated pos of relay vehicle 
    # 
    #Notation: 
    #           Remote vehicle: rem 
    #           Relay vehicle:  rel 
    #           Ground Control: GCS 
     
    #convert pos of rem & gcs from llh to ecef 
    pos_rem_ecef=LLA_ECEF_Convert( pos_rem_llh[0],pos_rem_llh[1], 
                                   pos_rem_llh[2],'LLAtoECEF') 
     
    pos_gcs_ecef=LLA_ECEF_Convert( pos_gcs_llh[0],pos_gcs_llh[1], 
                                   pos_gcs_llh[2],'LLAtoECEF' ) 
     
    #calculate midpoint in ecef 
    pos_rel_ecef=pos_gcs_ecef + 0.5*(pos_rem_ecef-pos_gcs_ecef) 
     
    #convert pos of rel from ecef to llh 
    pos_rel_lla=LLA_ECEF_Convert( pos_rel_ecef[0],pos_rel_ecef[1], 
                                  pos_rel_ecef[2],'ECEFtoLLA') 
     
    return pos_rel_lla 

 

  



85 

 
 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, 
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply 
with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

23-03-2017 
2. REPORT TYPE  

Master’s Thesis  
3. DATES COVERED (From – To) 

August 2015 – March 2017 

TITLE AND SUBTITLE 
 
Improving Unmanned Aerial Vehicle Formation Flight and 
Swarm Cohesion by Using Commercial Off the Shelf Sonar 
Sensors 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 
5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 
McClanahan, Robert L., Captain, USAF 
 

5d.  PROJECT NUMBER 
 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way, Building 640 
 WPAFB OH 45433-8865 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT-ENV-MS-17-M-202 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 AFRL AEROSPACE SYSTEMS DIRECTORATE (RQ)  
 2130 Eighth Street 
 Wright Patterson Air Force Base, Ohio 45433-7765 
 (937) 938-4805 paul.fleitz@us.af.mil 
 ATTN: Paul Fleitz 
 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
 
AFRL/RQ 
11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
     DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

13. SUPPLEMENTARY NOTES   
This material is declared a work of the U.S. Government and is not subject to copyright 
protection in the United States. 
14. ABSTRACT  
 
Unmanned Aerial Vehicle (UAV) formation flight and swarming are active areas of research within the 
Department of Defense (DoD). The current use of low cost commercial off the shelf (COTS) components 
to architect UAV formation flights results in insufficient position accuracy of the UAVs in the formation. 
This research aims to demonstrate the cohesiveness of formation flights increases by using onboard 
sonar sensors to accurately measure the distance the follower UAV is from the leader UAV.  This 
research effort reduced the RMSD by 37.3% and the average position error by 70.9% when compared to 
previous flight test. 
 
 

15. SUBJECT TERMS 
UAV, Swarming, formation flight 
16. SECURITY CLASSIFICATION 
OF: 

17. LIMITATION 
OF  
     ABSTRACT 
 

UU 

18. 
NUMBER  
OF PAGES 
 

98 

19a.  NAME OF RESPONSIBLE PERSON 
Dr. David Jacques, AFIT/ENV 

a. 
REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS 
PAGE 

 
U 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 785-3355, ext 3329  
(david.jacques@afit.edu) 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 


	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	List of Figures
	List of Tables
	I. Introduction
	1.1 Background
	1.2 Problem
	1.3 Objective
	1.4 Justification
	1.5 Scope
	1.6 Methodology
	1.7 Research Questions
	1.8 Materials/Equipment
	1.9 Thesis Summary

	II. Literature Review
	2.1 Chapter 2 Overview
	2.2 Swarming and Formation Flight Algorithms
	2.3 Onboard Sensors
	2.4 Pixhawk Autopilot
	2.5 Conclusion

	III. Methodology
	3.1 Introduction
	3.2 Overview
	3.3 Materials and Equipment
	3.3.1 Unmanned Aerial Vehicles
	3.3.2 Pixhawk Autopilot
	3.3.3 Sonar Sensor
	3.4 Procedures and Processes
	3.4.1 Algorithm
	3.4.2 Sonar Sensor Mounting
	3.4.3 Sonar Algorithm and Pixhawk Autopilot Response
	3.4.4 Flight test
	3.4.5 Data Analysis
	3.5 Summary

	IV. Results and Analysis
	4.1 Chapter 4 Overview
	4.2 Ground Tests
	4.2.1 Sonar Range Test
	4.2.2 Sonar Algorithm Ground Tests
	4.2.3 Guided Position Algorithm Ground Test
	4.3 Flight Tests and Results
	4.3.1 Initial 4m Separation Flight Test
	4.3.2 3m Separation Flight Tests
	4.3.2.1 Initial 3m Flight Test
	4.3.2.2 Final 3m Flight Test
	4.4 Flight Test Results Comparison

	V.  Conclusions and Recommendations
	5.1 Chapter Overview
	5.2 Research Questions Answered
	5.3 Recommendations for Future Research
	5.4 System Implications
	5.5 Summary

	Appendix A
	Sonar Script

	Appendix B
	Follower Script

	Appendix C
	Leader Script

	Appendix D
	Multi-Vehicle Script


