IMPROVING UNMANNED AERIAL VEHICLE FORMATION FLIGHT AND
SWARM COHESION BY USING COMMERCIAL OFF THE SHELF SONAR
SENSORS

THESIS

Robert L. McClanahan, Captain, USAF
AFIT-ENV-MS-17-M-202

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.

AFIT-ENV-MS-17-M-202

IMPROVING UNMANNED AERIAL VEHICLE FORMATION FLIGHT AND
SWARM COHESION BY USING COMMERCIAL OFF THE SHELF SONAR
SENSORS

THESIS

Presented to the Faculty
Department of Systems Engineering and Management
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Robert L. McClanahan, BS

Captain, USAF

March 2017

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-17-M-202

IMPROVING UNMANNED AERIAL VEHICLE FORMATION FLIGHT AND
SWARM COHESION BY USING COMMERCIAL OFF THE SHELF SONAR
SENSORS

Robert L. McClanahan, BS

Captain, USAF

Committee Membership:

Dr. David Jacques, PhD
Chair

Dr. John Colombi, PhD
Member

Lt Col Amy Cox, PhD
Member

AFIT-ENV-MS-17-M-202

Abstract
Unmanned Aerial Vehicle (UAV) formation flight and swarming are active areas of
research within the Department of Defense (DoD). These areas of study cover multiple
engineering disciplines; from mechanical and aeronautical to computer science and
human factors. The current use of low cost commercial off the shelf (COTS) components
to architect UAV formation flights results in insufficient position accuracy of the UAVs
in the formation. Latency in communication between autonomous vehicles degrades
formation cohesion. This research aims to demonstrate the position error of formation
flights decreases by using onboard sonar sensors to accurately measure the distance the
follower UAV is from the leader UAV. The sensor enables the follower UAV to
appropriately and quickly respond to errors in position by adjusting the followers
velocity. The UAV architecture, using onboard sensors, demonstrated tighter formation
cohesion by measuring the average position error during multiple flight tests of UAVs
and compare these results with previous formation flight tests that did not utilize onboard
sensors. The previous flight tests, used the same guided position algorithm, the same X-8
airframes, but no onboard sensor for real time distance error measurement. Since the
previous flight test had a similar configuration. This assessment shows how position error
was effected by incorporating the sonar sensor. This research effort was able to reduce
the Root Mean Square Deviation (RMSD) by 37.3% and the average position error by

70.9% when compared to the previous flight tests without sonar.

Acknowledgments

I would like to express my sincere appreciation and gratitude to my faculty advisor, Dr.
David Jacques, for not only his guidance, but his willingness to let loose of the reigns and
let me run. This experience has been not only an academic challenge, but an absolute
blast thanks to his leadership and support. | would also like to thank Mr. Rick Patton for
always being ready to pounce and lend an eager, encouraging hand whenever something
was asked of him or if | was just trying to pick his brain for his wealth of knowledge and
experience. In addition, |1 would like to thank Jeremy Gray for all his help and guidance.
Jeremy’s expertise in writing python scripts and interfacing with the Pixhawk was
instrumental to the success of this research effort. Every interaction with Dr. Jacques,
Rick, or Jeremy was always met with a handshake, a smile, and always a few laughs. |
could not have asked for a more positive experience in graduate school and | know | have
made a few more friends along the way.

Finally, I would like to thank my loving wife for her unwavering support. Without her
hard work and dedication to the family none of this would have been possible. She
allowed me to spend countless hours locked in the basement, struggling, but determined

not to let Python get the better of me. | love you Lauren and thank you!

Robert L. McClanahan, Capt, USAF

Table of Contents

Page

A 1] 1 - 01 USRI iv
LISE OF FIQUIES ..ottt b ettt e et e s r et e et e nre e nbeenee e IX
IS 00 N 11] LSRR PSR Xii
IR L1 oo 0 od o] o USSR 1
IO T 1ot 0 {0 o o PSS 1

I 1] o] 1= o S S 2

IR T @ o] =Tt 1 - O 3

IO 11 S 1) =L o oSS 3

15 SCOPE e re e 4

IR CR\Y/ 1= 1 g oo (o] [oo | 2SS 5

1.7 ReSEArch QUESTIONSviiiieiiieeiee ittt ettt st te e e e sbeesnneeree s 6

1.8 MaterialS/EQUIPIMENToiiiiiie ettt es 6

1.9 THESIS SUMIMAIYc.viiiiiiieitieie ettt sbe e sneenrs 7

I, LITErature REVIEWecuiiiiiecie ettt et e e e sbe e e e snaenneeneesnaenne s 8
2.1 Chapter 2 OVEIVIBW........ccueeiiiieeiie e seesieeee s ste e staeste et estaesteanaestaeaeaneesneenaeeneenrs 8

2.2 Swarming and Formation Flight Algorithmsccccceveiiei i 8

2.3 OND0AIA SENSOIS....ccviiiieiieeieeieseesteeteseeste e sta e te et e sreesteeseesseesteeneesreesseeneesneensean 16

2.4 PiXNaWK AULOPIIOL.ot 18

pZE ST 03 Tod 11151 o] o USSR 21

(1Y =74 g ToTo (o] oo YRR UPPRT 22
K J0 A 11 0o 1 od 1 o USSR 22

3.2 OVEIVIEW ...ttt ettt s et et e e e s e e ba et e e s e e s reeteeseesbeesteaneestaeneeneenneeneean 22

3.3 Materials and EQUIPMENT........c.coiieiiiie e 23

3.3.2. UNmManned ACTIAl WENICIES. eeeenenee 23

3.3.2 PIXNaWK AULOPIIOL.cieeieiieiie e e 26
3.3.3 SONAE SENSOT ...ttt et n e 26
3.4 ProCcedures and PrOCESSEScuciuiiueriiriiiieniieietese ettt 27
341 AIGOIITNIM L.t 27
3.4.2 SoNar SENSOr IMOUNTINGoouviiieiiitie ettt sneenae s 30
3.4.3 Sonar Algorithm and Pixhawk Autopilot ReSPONSE..........ccceevviieiienenieieenns 33
I O o [T 1 (XS] AP R R URTTRPRR 38
3.4.5 DAtA ANAIYSIS.eeiiiiiieiieeie ettt ae s 39
3.5 SUMMANY ...ttt ettt st e an e e ne e nee e 40
V. RESUIS aNd ANGIYSIS. ..o 41
4.1 Chapter 4 OVEIVIEW.coiuieiieiie it eie sttt sttt sttt e nbe e nneenns 41
4.2 GIOUNG TESES ...ttt bbbttt b b nn et 41
4.2.1 S0NAr RANGE TOSL.. ..ottt b e ne e 41
4.2.2 Sonar Algorithm Ground TESESeeieeiiiieiiereeies e s 44
4.2.3 Guided Position Algorithm Ground TeStcccverieriniene e 48
4.3 Flight Tests and ReSUILS.coui i e 50
4.3.1 Initial 4m Separation FIIght TeSt.......cccoviiiiiieie e 51
4.3.2 3m Separation FIGNt TESES ..o s 53
4.3.2.1 Initial 3mM FIHGht TeSt....cviiieieee s 54
4.3.2.2 FINal 3M FHGNE TESEeoeiiie i e 56
4.4 Flight Test Results COMPATISONcceoiieiiiieiierieeie et 62
V. Conclusions and ReCOMMENALIONSccorvirviiririiieiieeeseseee s 64

vii

5.1 Chapter OVEIVIBW.......cueiiiieieiiiesieesie sttt sttt sttt steebesneesneenae s 64

5.2 Research QUESLIONS ANSWEIEAcocviiiiriiiieiieeitee et sre e sre e 64
5.3 Recommendations for Future RESEArCN............cooiiieiieie s 67
5.4 System IMPIICALIONScovviieiiiiieie et 67
5.5 SUMMANY ...ttt be e sn e ne e nee e 69
N 0] 01T 0 LG PSS 73
Y0 0T Yol o AR URRTRPRR 73
N o] 1= 00 LG = PSS 76
] 01T =T o o AP PR 76
y N o] 01T 0o 3 G TR TP 80
[T Vo [T o o S SPR 80
E N o] o100 D G PR R TP 83
MUIEI-VENICIE SCIIPL ... 83

viii

List of Figures

Figure 1. Articulation POINt [13]....cccueiiieiieiieie e 10

Figure 2.Comparison of swarm in vulnerable states without (left) and with (right) mode

V1 (od T 1 SR 11
Figure 3. Simulation Validation Using Sic RODOtS[13]ccccoviiieiieiiiieieee e 11
Figure 4. Modified Pigeon Inspired Algorithm [3].......ccooovvviieiieiiee e 12
Figure 5. Follower Commanded Position Calculation Method [5].........ccccovevviiieiieiinnnen, 15
Figure 6. Pixhawk Autopilot Basic Set Up [21] ...ccoovveieieeieeie e 19
Figure 8. Mission Planner GUI [23]cvoiieiiiie it 21
Figure 9. 3DR X8 QUAACOPIETecveeiieiiecieeite et te et e e sae e e e saa e nneas 24
Figure 10. Leader BIOCK DIaQramcccooiveiieeieiieieeie e et sie e sie e saa e nneas 25
Figure 11. Follower BIOCK DIaQramcccveieiiieieeie et saa e 25
Figure 12. Pixhawk AUtOPIlOt [21] ...ecovveieiieieeie e 26
Figure 13. I2CXL-MaxSonar®- EZ™ Series MB1202 [25]......ccccevvevevivenieeieseeie e 27
Figure 14. Modified OV-1 from Gray [5].....cccereriuerieriiiiese e seese e se e 28
Figure 15. SV-1 (System Interface DeSCriptioNn)ccccvvvveveeieiieeseeie e se e 29
Figure 16. Sonar GIMbDal SEt UP........ooviiiiieiicie e 31
Figure 17. Gimbal Figure 8 Search Patternccccoveeiiieie s 32
Figure 18. SONAr COVEIAQgE ATa........ciuveieireerieereseesieeieseesteessesseesseasaesseessessessesssessessses 33
Figure 19. Pixhawk Response AIgOrithmc.ooveiioiiiice e 34
Figure 20. OV-5b (Sonar Algorithm Activity Diagram)cccccevveveiieeieerieseeseeseeseens 35

Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.

Figure 43.

OV-5D Detail VIBW L.......oiiiiiiiiiiieeee e 36
OV-5D Detail VIBW 2.......oiiiiiiiiiieeee e 37
OV-5D Detail VIBW 3.......oiiiiiiieccee s 38
Leader Waypoint PAtternccocviieiiiie e 39
StOCK X-8 QUAAIOTON ...t 42
Modified X-8 QUAAIOtOr..........cccuveiieiiieiie e 42
Lead X-8 with AlUMINUM TaPe ...oceeieiiiicieeeee e e 44
Sonar Algorithm Ground Test SEt UpPc.cooeeiieienienieiieie e 44
Sonar Algorithm OULPULSeeiuiiieiie e 46
Sonar Minimum AIFSPEEUoueiieiieiieie et 47
Phase 1 Guided Algorithm Ground TesStccccevieririininriee e 49
Guided PoSItION GrouNd TESE.......cveiiiiieieiiesiiseeee s 50
AM TSt FIIGNT....oe s 51
GPS Track from 4m FIight TeSt.......cooiiiiiiie e 52
3M TSt RGNt 53
NOth/SOULN OFFSELS........oeieiiie e, 54
Final 3m FHGht TSt ... e 56
Position at Matching TIMEc.oooviiiiiiee e 57
RAW SONAT Data.......cceeiiiiiiiciic s 58
Waypoint Nav Speed versus Ground Speed (P10t 1).......cccccovveieeiiiininenienne 59
Waypoint Nav Speed versus Ground Speed (P10t 2).........cccoovevveiiiniiennenne 60
Follower POSITION EITOFccoiiiiiiececc e 61
POSItION Error COMPAISONcveeviiiierieeiesiee sttt sttt ee e see e 63

Xi

List of Tables

Page
Table 1. SENSOr COMPAIISONciueiiiiieiieeiteeieeiee sttt e ee st este et esbeebesreesreeneeareenseens 18
Table 2. SONAr PAr@mMETErSccooiiiiiiiiiiieeee e 20
Table 3. 3D Robotics X8 SpecifiCations [24]cccocvieiiiiiiieieee e, 24
Table 4. Control LOOP FrEQUENCIEScoiviiiieiieiiieie sttt sae e 30
Table 5. Sonar Ground TeSt RESUILS ..o 43
Table 6. Sonar Algorithm Ground TeSt MatriXccceveerieriinnienriesie e 45
Table 7. 4mM Flight TSt RESUILSeeoviiiieiie e 53
Table 8 Initial 3mM FIIght TSooiie e 55
Table 9 Final 3m Flight TeSt RESUILS........cccoiiiiiiiiiieeee e 61
Table 10 Gray's X-8 Quadrotor ReSUILS [5]ccvereeierirrieieiie e 62
Table 11. Flight TeSt COMPAIISONc..oiiiiiiiiiierieeie et see e 63

Xii

IMPROVING UNMANNED AERIAL VEHICLE FORMATION FLIGHT AND
SWARM COHESION BY USING COMMERCIAL OFF THE SHELF SONAR
SENSORS

l. Introduction

1.1 Background

Unmanned Aerial Vehicle (UAV) formation flight and swarming are active areas
of research within the Department of Defense (DoD). These areas of study cover multiple
engineering disciplines; from mechanical and aeronautical to computer science and
human factors. The Strategic Capabilities Office (SCO) recently unclassified information
on their UAV swarm test and the SCO’s proposed fiscal year 2017 (FY17) budget has
doubled from FY16 to $902 million in FY17 [1]. This budget increase shows the
resources which the DoD is dedicating to UAV swarm and formation flight technology.

There are numerous instances where close proximity flight is advantageous, to
include, flying in a space constrained environment, controlling radar signature, and even
electronic warfare beam shaping. Formation flight, like that of geese, would allow the
UAVs to fly more efficiently, by dividing the induced aerodynamic drag among the
formation [2]. A UAV swarm is a group of UAVs working together to accomplish a
common goal. Multiple UAVs working together to accomplish a task can be extremely
efficient in various scenarios. These scenarios include Search, Identify, Engage and
Assess (SIEA) missions, area mapping, and even air refueling [3]. The DoD has an
invested interest in all of these swarm areas. One could imagine military scenarios that
would fall into each of these categories. Using teamwork, the swarm can efficiently and

more effectively accomplish the mission. UAV swarms can provide strength in numbers

and quickly overrun the enemy, much like a swarm of locust attacking a crop. According
to the Air Force Chief Scientist, Gregory Zacharias, “Groups of coordinated small drones
could also be used to confuse enemy radar systems and overwhelm advanced enemy air
defenses by providing so many targets that they cannot be dealt with all at once” [4]. The
enemy may be able to see the swarm coming, but there is nothing they can do about it, as
there is no way to engage all of the UAVs.

Controlling a UAV formation flight or swarm presents many challenges. These
challenges range from organization of the formation or swarm, task allocation, inter-
swarm communication, and operator work load. Many control algorithms have been
developed and are constantly evolving to address the numerous issues with swarming
behavior. Algorithms are designed with a certain mission in mind. The final swarm
algorithm solution should be dynamic, allow various mission types, and even have the
ability to switch mission type during execution.

A single operator cannot have situational awareness of the health and status of all
the UAVs in a formation flight or swarm, and it obviously is not cost effective to have
numerous operators controlling a swarm, with each operator responsible for a couple of
the UAVs in the swarm. Therefore, some inherent risk exists in formation flight and

swarm systems since the operator cannot have full situational awareness of each aircraft.

1.2 Problem
The current use of low cost commercial off the shelf (COTS) components to
architect UAV formation flights results in insufficient position accuracy of the UAVs in

the formation. Latency in communication between autonomous vehicles degrades

formation cohesion. Current COTS open-air formation architectures have separation
variances of approximately 10m with an average position error of 3.10m during
formation quadrotor test flights [5]. These vast position errors degrade and eliminate the
swarm’s ability to accomplish the mission and remove the aerodynamic or signature

control advantages gained by the formation flight.

1.3 Objective

Demonstrate that the use of onboard sonar sensors reduces the desired position
error and by doing so, allows the commanded vehicle to vehicle offset or separation
distance to be reduced. This will be accomplished by using onboard sonar sensors to both
accurately measure the distance the follower UAV is from the leader UAV and enable the
follower UAV to appropriately and quickly respond to errors in position. The UAV
architecture, using onboard sensors, will demonstrate tighter formation cohesion by
measuring the average position error during multiple flight tests of UAVs and compare
these results with previous formation flight tests, without using onboard sensors. The
previous formation flight tests and data collected by Gray will be used for direct
comparison, since his flight tests utilized the identical airframe and components minus

the sonar sensor [5].

1.4 Justification

In the current fiscal environment, it is important to remain cost conscious and to
design systems that allow the greatest flexibility in the operational environment. With the
reduction in manpower, the Air Force must come up with new ways of multiplying the

force. According to the former Air Force Chief of Staff, Gen Mark Welsh, “Virtually

every mission area faces critical manning shortages... we have got to figure out different
ways of using our people in a more efficient way or we will wear them out. And if we
lose them, we lose everything" [6]. The Air Force is currently 41% smaller than it was
during the first gulf war, but has increasing responsibilities [6].

UAV swarms allow a group of low cost, autonomous vehicles to work together as
a cohesive unit to accomplish a single task or multiple tasks. Using this teamwork, the
swarm can efficiently and more effectively accomplish the mission. According to the
Department of Defense’s (DoD) Unmanned Systems Integrated Roadmap, “Operating in
swarms of ‘intelligent munitions’ weapons...can autonomously search for and destroy
critical mobile targets while aiming over a wide combat area” [7]. The DOD has realized
the importance of groups of unmanned systems cooperatively working together towards a

common goal and plans to incorporate this technology into future systems [7].

1.5 Scope

This research is built off of Jeremy Gray’s thesis, Design and Implementation of a
Unified Command and Control Architecture for Multiple Cooperative Unmanned
Vehicles Utilizing Commercial Off the Shelf Components, by adding onboard sonar
sensors to the follower vehicle [5]. The addition of the onboard sonar sensors allows the
follower UAV to sense the location of the lead vehicle, giving it greater situational
awareness, and allowing it to autonomously correct for position errors.

The onboard sensors were limited to a single sonar and the algorithm was only
modified to incorporate the addition of the sonar sensor. This allowed the effect of the

sonar sensor to be directly compared to the system architecture without the onboard

sonar. Further, all test UAVs were equipped with Pixhawk autopilots, chosen since it is a
COTS, low cost, open source, autopilot. The Pixhawk allows for software manipulation
through Python scripting, which can be run either directly in the ground station (Mission
Planner) graphical user interface (GUI) or through various command prompt based
programs (MAVProxy and DroneKit).

All flight tests were limited to only two unmanned vehicles, one leader and one
follower. Flight tests were conducted using quadrotor aircraft. Quadrotor UAVS were
selected since they allow the test to be slowed down or even paused by commanding the
quadrotors to hover in place. The choice of rotary platforms reduced the risk of the

vehicles colliding during flight tests.

1.6 Methodology

A literature search was conducted to determine the appropriate type of sensor as
well as the sensor model to be used in this effort. A sonar sensor was selected based on
the size, weight, power consumption, and the ease of integration with the Pixhawk
autopilot. The flight control algorithm developed by Jeremy Gray was modified to be
used with DroneKit [5]. The sonar algorithm was run directly on Mission Planner,
separate from Gray’s algorithm.

A series of flight tests were conducted to analyze the effect of using the onboard
sensor during formation flights with two vehicles. The lead UAV flew a series of known
flight paths via a way point pattern while the follower UAV was commanded to follow

the lead UAV at a set distance. Flight data was collected, including GPS position,

altitude, and airspeed on both aircraft during the duration of all flight test. Additionally,
the sonar data was collected on the follower aircraft.

A root mean square error analysis was run on the data to determine the separation
distance error. This error was then compared to previous formation flights to determine

the effect of the sonar sensor.

1.7 Research Questions
The research questions that this investigation attempts to answer are listed below.

e What onboard sensors are available with low weight and low power consumption
for use in UAV swarms?

e What swarm algorithm modifications are required to incorporate onboard
sensing?

e How are the onboard sensors integrated with the Pixhawk autopilot?
e How can the Pixhawk autopilot take advantage of the onboard sensor data?

e How much can onboard sensors reduce required offset and desired separation

distance errors?

1.8 Materials/Equipment

This research required multiple quadrotor UAVs, multiple 3D Robotics telemetry
radios, sonar sensors, flight test approval, and range time to conduct flight testing. The
required equipment is outlined in detail below.

The two COTS quadrotors that this research used where the X-8s, manufactured
by 3D Robotics. These quadrotors have been used extensively by the Air Force Institute
of Technology and are a proven testing platform. A detailed description of these

quadrotors can be found in chapter I11.

Two Pixhawk autopilots were required for this research, one for each quadrotor.
The use of the Pixhawk autopilot allowed for seamless integration with the sonar sensor.
A description of the Pixhawk can be found in chapter I1, with specific implementation
details in chapter I11.

Four sonar sensors were tested in this research to determine the sensor that
produced the best balance of accuracy, distance, and beam width. All sonar sensors were
manufactured by Maxtronics and the sensor model numbers tested were the MB 1202,
MB1260, MB1240, and MB 1020. The MB 1202 was selected after all ground testing
was completed. A description of the Maxtronics sonar can be found in chapter Il and

chapter III.

1.9 Thesis Summary

This section describes the other chapters of this thesis. In the next chapter, an
extensive literature review was completed to understand the current state of formation
flight research and to explore available sensors. Chapter 111 outlines the system
architecture and describes the algorithms used and how they are incorporated into the
system. Chapter IV analyzes the results of this research and compares these results to
previous flight tests conducted without the use of sonar sensors. Finally, chapter V states

the conclusion of this research and recommends future work.

Il. Literature Review

2.1 Chapter 2 Overview

The DoD is investing heavily into Unmanned Aerial Vehicle (UAV) formation
flight and swarm technology. Swarms of low cost, attritable, autonomous vehicles,
working together as a cohesive unit, can more efficiently accomplish a task or mission
than a single, high value, asset. With the Air Force being undermanned and with more
responsibility than ever, the DoD must push to accomplish its mission more efficiently
and at a lower cost [6]. The use of low cost, commercial off the shelf (COTS)
components, could achieve this objective. COTS components currently used to architect
UAYV formation flights results in insufficient position accuracy of the UAVs in the
formation. This inaccuracy in position negates many of the positive effects and uses of
close formation flying. The literature review outlines previous work, and covers the

following subject areas in order to understand the current state of research:

. Swarm and Formation Flight Algorithms
. Onboard Sensors
. Overview of Pixhawk Autopilot and Ground Station

2.2 Swarming and Formation Flight Algorithms

Before we analyze the efficiency of a swarm algorithm we must first understand some
basic rules about swarm behavior: “Rules must be drawn together in order for an agent
or computer to accomplish a coherent response” [8]. Craig Reynolds is known for
developing the three basic laws governing flocking behavior [9]. These rules are collision

avoidance, velocity matching, and flock centering [9]. Flocking and formation flight

algorithm research has been conducted at the Air Force Institute of Technology (AFIT)
by manipulating these three basic rules. Both Kaiser and Lambach developed algorithms
by modifying these basic rules for use in UAV formations flight [10], [11]. In 2007,
Nowak, Price, and Lamont from AFIT, expanded on Reynold’s original rules and
developed a simulation called SWARMFARE to evaluate behaviors of autonomous
control [8], [9]. The rules they utilized are:

e Flat Align — vector align with neighbors

e Target Orbit — orbit target at safe distance

e Cluster range towards - cohesion

e Cluster Range away - separation

e Attract — towards center of mass of all targets

e Weighted Attract — towards closest target

e Target Repel — repel if with 90% of UAV sensor range

e Weighted Target Repel — repulsion based on proximity to target

e Evade - collision detection and avoidance

e Obstacle Avoidance
By applying different weights to each of these rules, the behavior of the swarm can be
modified or altered to achieve the appropriate response for the mission [8].

As shown in the rules, some issues with swarming include the swarm agents getting
too close together (cohesion), too far apart (separation) for their sensors, or the creation
of an articulation point. An articulation point is most easily described as a single point

failure. This occurs when a single agent is the link between two larger masses of the

swarm. If this single agent loses contact with either half of the swarm, then the swarm

will be separated. Figure 1 visualizes an articulation point.

@ | B O
@/ o

. O
O

Figure 1. Articulation Point [13]

O
O O
O

Seoung and MckLurkin developed a mode switching algorithm that uses network
sensing to detect the health of the swarm. This algorithm changes the weights on the rules
based on the vulnerability of the swarm. If all is well, the swarm will flock in the same
direction (Flat Align). If an articulation point develops, the swarm will cluster to
eliminate the Articulation Point. Figure 2 shows the resulting swarm configuration after
being in a vulnerable state both with and without mode switching. The three
configurations on the left are without mode switching, the three on the right are with
mode switching. The mode switching allowed the swarms to recover from a vulnerable

state [13].

10

Figure 2.Comparison of swarm in vulnerable states without (left) and with (right)

mode switching [13]

Seoung and MckLurkin validated these simulation results using six robots (Figure 3).
Again the top row (al-a6) is without the mode switching algorithm whereas the bottom

row (b1-b6) is with the mode switching algorithm [13].

(b2) (b3) (b4)

Figure 3. Simulation Validation Using Sic Robots[13]

This work showed the importance of having an algorithm that is dynamic and can change

based on the changing environment of the swarm.

11

A new bio-inspired pigeon algorithm has recently been developed by Hao, Luo,
and Duan [3]. The main tools that pigeons use to find their way are maps, compass, and
landmarks. They can sense the magnetic field and use the sun to develop a mental map.
Pigeons also recognize and remember landmarks to aid in their navigation. One issue that
comes up with most swarming algorithms is premature convergence. The swarm can get
too clustered together reducing the effectiveness of certain missions. The pigeon
algorithm has been modified to reduce the clustering. The modified pigeon inspired
algorithm produces a subpopulation of superior position pigeons for the others to track

[3]. This modified pigeon algorithm is depicted in Figure 4.

Figure 4. Modified Pigeon Inspired Algorithm [3]

The pigeon algorithm was just one of many algorithms that were studied in this
research. There are numerous swarm algorithms in existence and more being

continuously developed. To generate the most robust swarm, it is necessary to have an

algorithm that can react to the instantaneous health of the swarm and dynamically change
its priorities to keep the swarm operating as one cohesive and effective unit.

Through the present research, it was discovered that the majority of swarm and
formation flight algorithms are only simulated, not flight tested, and include major
assumptions. There are numerous recent articles on formation flight algorithms [14], [15],
[16]. Each article incorporates a different approach to keeping the UAVs aligned in the
formation. What these articles lack is real world flight testing. They mostly employ
simulated environments to test their formation flight algorithms; the simulations
incorporate major assumptions which are not in line with current technology limitations.
For instance, in one formation flight conference paper, the assumption was used that all
vehicles in the formation could communicate with each other [16]. In another article, it
was assumed that all vehicles had “good” [14] onboard computing power. These
formation flight architectures and algorithms were all impressive, just not validated with
real world flight test.

With the numerous swarm and close formation flight algorithms being developed
and simulated, only one seems to be flight tested. While other algorithms have been
tested in indoor controlled ranges, it is only the leader-follower algorithm that is being
flight tested out in the real environment: “The advantage of the ‘leader-follower’
approach lies in its conceptual simplicity, where the formation flight problem is reduced
to a set of tracking problems that can be analyzed and solved using standard control
techniques” [2]. The leader-follower approach requires hardware that is already flown on

UAVs, the global positioning system (GPS) receiver, and an onboard inertial

13

measurement unit (IMU). In its basic form, the leader-follower approach does not require
extra sensors or computing power.

In August 2015, the Advanced Robotic Systems Engineering Laboratory
(ARSENL) from the Navy Postgraduate School completed a then world record swarm of
50 UAVs using the leader-follower algorithm [17]. This test utilized 2 mini swarms of 25
UAVs each, with 1 UAV designated the leader of each mini swarm. The leaders flew at
the highest altitude of each swarm with each of its 24 followers spaced at 15m increments
below to ensure no midair collisions. This entire 50 UAV swarm was controlled by a
single ground station operator [17]. This test demonstrated the utility and scalability of
the leader-follower scheme.

In Gray’s research, a formation flight algorithm was developed by capturing the
lead UAVs telemetry (GPS position, ground course vector, and ground speed), computing
a follower vehicle waypoint, and sending this new waypoint to the follower UAV. In the
computation of the follower’s waypoint, the following variables could be adjusted:

e rofset: radial distance from the desired follower position to the leader vehicle's
position

e Ooriset: angular offset from the leader's ground course vector

e Li: forward offset along the leader's ground course vector

e Occ: ground course angle of the leader relative to north

All of these variables are depicted in Figure 5.

14

Follower
Commanded
Position

ffset
Desired Position
of Follower

Figure 5. Follower Commanded Position Calculation Method [5]

In Gray’s architecture, the data from the leader is transmitted to the ground
station, where the algorithm calculates the desired follower’s position, prior to this new
position being sent to the follower. One factor affecting the accuracy of the follower
position is the latency of this command and control architecture. This latency in Gray’s
test was measured to be approximately 0.46s. For formation flights using slower moving
vehicles (quad rotors), the communication latency is less of a factor than it is on faster
moving (fixed wing) vehicles. This can be seen directly in the average positon error of
3.1 meters for the quadrotor tests and 130.7 meters for the fixed wing tests [5].

Another factor affecting the accuracy of the follower position is the lack of

feedback. The follower UAV does not know if it is in the correct position and neither

15

vehicle airspeed nor groundspeed were variables that were controlled in Gray’s formation

flight algorithm [5].

2.3 Onboard Sensors

Inter-vehicle communication also plays an important role in the fidelity of swarm
behavior. By having the UAVs in the swarm communicate directly with each other, the
latency of commands is significantly reduced compared to sending all communications
signals routed through the ground station. The behavior and formation of the swarm
needs to be guided by individual agent’s reactions with its environment [8]. This is where
onboard sensing comes into play. For a UAV to react with its environment, it must first
be able to sense and understand its environment.

For a swarm to stay organized, the individual UAVs need to have the ability to
sense and react to their environment. They need to know their distance from other
aircraft in the swarm and from potential hazards. Some common sensors used on UAVs
include optical, sonar, and light detecting and ranging (LiDAR).

Optical sensors offer several advantages including low weight and power
consumption, but there are a few key disadvantages. Optical sensors can easily detect an
object in the clear sky since the contrast between the object and the sky is great.
However, on an overcast day or when the object is below the horizon, optical sensors
have a harder time detecting the object. Perhaps the greatest disadvantage to the optical
sensor is determining the distance to the object [18]. Without knowing the size of the

object, the distance to the object cannot be determined. A work-around may exist for

16

swarms with all the same size aircraft, but the distance measurement will still not be
accurate.

Sonar sensors are another way to accurately measure distance. Sonar sensors are
an extremely popular choice for measuring distance since they are cheap, robust, and
accurate. Sonar sensors work by emitting a pulse and then measuring the time it takes for
the echo to return to the sensor [19]. Sonar sensors are available in a variety of beam
widths and detection distances. In addition, the open source autopilot (Pixhawk) that this
research used, already has integration documentation for these simple sensors. This
facilitated sensor integration.

LiDAR sensors, like sonar, can also accurately measure distance. LIDAR sensors
work by pulsing a laser at high frequency and measuring the time it takes for the light to
be reflected back [20]. This is much like a sonar sensor, but light is used versus sound.
One of the advantages of LIDAR is the resolution. A scanning or flash LiDAR can create
high resolution contour maps of terrain. The disadvantage of LiDAR, for the application
of this research, is that is has a narrow beam and would need to be pointed precisely at
the lead UAV to get a return signal.

Each sensor was then compared based on a list of important factors to determine
the appropriate sensor. These categories are: Cost, Field of View, Detection Distance,
Distance Accuracy, and ease of Pixhawk Integration. The results of this sensor

comparison are displayed in Table 1.

17

Table 1. Sensor Comparison

Sensor Comparison
Field

Detection Distance Pixhawk
Cost of . .
. Distance Accuracy | Integration
View
Optical | + + + - -

Sonar + + -

Lidar - - +

2.4 Pixhawk Autopilot

The Pixhawk autopilot is an open source autopilot that allows any user to
download and modify the source code or run Python scripts in conjunction with the
ground station. Pixhawk utilizes Mission Planner (other software options are also
available) as the ground station graphical user interface (GUI). The Pixhawk also has a
large user community with forums that allow for quick reference to any problems that
may arise. The Pixhawk autopilot is designed to be plug and play. The basic set up for
Pixhawk is shown in Figure 6. This figure illustrates basic layout of the Pixhawk system

and describes how the components are connected to the autopilot.

18

(Required) Connect the buzzer
and safety switch.

(Optional) Connect a 3DR

Radio to Pixhawk's Telem

port using the 6-wire cable
provided with your 3DR

(Required) Connect a 3DR
GPS+Compass to provide the
autopilot with positioning data during

Radio Kit to receive data flight. This kit includes a 6-wire cable

~

to connect the GPS ports. Connect
the MAG to the I°C port using the
4-wire cable provided with the 3DR

GPS+Compass

and communicate with
the autopilot in flight.

(Required) Connect the 3DR
Power Module to the Power
port using the 6-wire cable to
direct power from your lithium
polymer (LiPo) battery to the
autopilot

(Optional) The I°C splitter expands the I°C port to allow
up to four additional peripherals to connect to Pixhawk.
Use the 4-wire cable to connect the I°C splitter and add a
compass module, external LED, digital airspeed sensor,

or other peripherals to your vehicle

Figure 6. Pixhawk Autopilot Basic Set Up [21]

The Pixhawk auto pilot allows for the incorporation of sensors. The Pixhawk
manual has existing procedures for connecting a sonar to the Pixhawk autopilot. The
sensors can utilize either the analog to digital port (ADC) or the 12C port. Parameters
must then be adjusted via Mission Planner in order to incorporate the use of the sensor.

These parameters are RNGFND_PIN, RNGFND_MAX_CM, RNGFND_SCALING, and

19

RNGFND_TYPE [21]. Table 2 shows a brief description of each of these parameters.
Once all parameters are set, the sensor voltage and distance can be read in the Mission

Planner GUI or incorporated into custom Python scripts.

Table 2. Sonar Parameters

Parameter Description

RNGFND_PIN Analog pin that rangefinder is connected to.
RNGFND_MAX_CM | Maximum distance rangefinder can reliably read
RNGFND_SCALING Scaling factor between rangefinder reading and distance

RNGFND_TYPE Type of rangefinder device connected

The Mission Planner GUI allows the user to easily incorporate custom scripts. In
the lower left region of Mission Planner, there is a tab that permits the user to run Python
scripts. This allows easy integration of the custom scripts with Mission Planner and
allows the user to read any of the numerous autopilot variables or set the control
parameters to a desired state or position. A complete list of the variable names and
example code is located in the user manual for Mission Planner and are defined by the
MAVLink protocol [22]. An example screen shot of the Mission Planner GUI is shown
in Figure 7. This screen shot illustrates the standard layout of the GUI. The heads up
display with all flight data is located in the top left. The moving map, that displays the
vehicles current position and way points, is on the right side of the screen. Also, a list of
tabs can be seen on the bottom left hand side of the screen. The tab, titled “Scripts”, is

used to load custom Python scripts.

20

Mission Planner 1.3.37 build 1.1.5917.13431 APM:Copter V3.3 (d6053245) =]

Wamboin

ajura |
refeserve

{ Guided Mo@ Kowen

Capital Hi} ne Forest
{
% Fyshwicl

r@ Queanbeyan

Jerrabomberra

Guided
4747>0

Gowrie
Greenway.

Bat 12.59v0.0 A 100% EKF Vibe GPS:3D Fix
5]

Foyalla

Figure 7. Mission Planner GUI [23]

2.5 Conclusion

Chapter Il reviewed swarm algorithms and the rules that guide them. Also, an
overview of applicable sensors that are currently being used in UAV applications were
explored. Finally, this chapter outlined the Pixhawk autopilot hardware, software, and its
various interfaces to understand how system hardware components are incorporated.

This literature search did not uncover any open-air flight tests conducted using a
feedback loop with onboard sensors. In all open-air flight tests, the follower vehicle or
vehicles were unaware of any position error. This research is targeting the gap that exist
by combining low-cost formation flight architecture with low-cost onboard sensors to

reduce formation flight position error.

21

I11. Methodology

3.1 Introduction

This research aims to determine the feasibility of incorporating low-cost sonar
sensors to aid in UAV formation flights using a COTS open source autopilot. Currently
the use of COTS components in UAV formation flights results in insufficient position
accuracy of the aircraft in the formation [5]. This research uses sonar sensors on board
the following UAYV to increase the position accuracy of the follower UAV with respect to
the leader. The sonar sensors allow for an accurate distance measurement to be collected

and then used in adjusting the follower UAV’s velocity.

3.2 Overview

In chapter 11, this research reviewed swarm algorithms and the rules that guide
them. Also, an overview of applicable sensors that are currently being used in UAV
applications were explored. Finally, chapter 11 outlined the Pixhawk autopilot hardware,
software, and its various interfaces.

By researching the literature, it was determined that the leader-follower algorithm
is an appropriate algorithm to incorporate into this project. The other algorithms that were
studied provide a higher degree of formation cohesion in simulation; however, major
assumptions were made and are not practical to incorporate into the physical system
architecture. The leader-follower algorithm only requires the leader’s current heading and
global positions system (GPS) data to be passed to the following vehicle. This data is
already calculated in the lead vehicle and can be passed to the follower vehicle via the

ground station.

22

The Maxbotics MB1202 sonar sensor was selected after conducting background
research on the various types of sensors that are available. This sensor was selected for
this project based on size, weight, power, accuracy, beam width, and ease of integration

with the Pixhawk autopilot.

3.3 Materials and Equipment
This research required multiple UAVSs, two quadrotors, Pixhawk autopilots, and

sonar sensors. The required equipment is outlined in this section.

3.3.1 Unmanned Aerial Vehicles

The COTS quadrotors used in this research are the X8s manufactured by 3D
Robotics. The X8 has an X frame configuration consisting of a total of 8 motors. Two
X8s were used during flight testing for this research effort. One of the X8s used in flight
testing is shown in Figure 8 and the X8 specifications are shown in Table 3.Table 3. 3D

Robotics X8 Specifications

23

Figure 8. 3DR X8 Quadcopter

Table 3. 3D Robotics X8 Specifications [24]

Frame X
Propellers APC 10X4.7
Battery 4S5 10000 mAh

Weight (with battery) | 7.7 Ibs
Aircraft dimensions 13.7inx20.1inx11.8in
Payload weight <2lbs
Flight time 14 min

A block diagram of both the leader and follower X-8 components are shown in
Figure 9 and Figure 10 respectively. These diagrams illustrate which components come
stock on the X-8 and which were added for this research effort. Stock items are shown in
blue, whereas the added components are highlighted in yellow. The lead vehicle required
modifications to enhance the acoustic signature to give the follower’s sonar a greater
effective range. This modification is discussed in detail in chapter 4, section 2.1. In

addition, the lead vehicle was fitted with an extra modem to communicate with a backup

24

ground station. It should be noted that this extra modem was not required for the
formation flight architecture; it was required to satisfy the flight safety review board. This
extra modem allows the backup ground station operation to have situational awareness of

the health of the lead UAV.

Leader UAV

- 7 g = = =N
Autopilot Airframe GPS Communication
Mntms ‘ ‘ Speed Conr.rollers Main GS Modem [Backup G5 Modem]

Elauery

l Acoustic Enhancement]

Figure 9. Leader Block Diagram

The follower UAV required the addition of the sensor package. The sensor package
included the sonar, gimbal, and the algorithm to operate each of them. The sonar and
gimbal set up is discussed, in detail, later in this chapter.

Fe:IO';\f-r UAV

y ¢+ ¢ ¢
[I T T |

[Sensor Package | Autopilot Airframe GPS Communication
[Sonar] [Algorithm] Motors Propellers

Gimbal] Battery Speed Controllers

Figure 10. Follower Block Diagram

25

3.3.2 Pixhawk Autopilot

The Pixhawk Autopilot is a low-cost ($250), COTS system developed and sold by
3D Robotics. It is an open source platform that permits access to the source code. The
ground station GUI, Mission Planner, contains simple interfaces to allow custom python
scripts to be ran in conjunction with the standard autopilot software. The Pixhawk

Autopilot is shown in Figure 11.

Figure 11. Pixhawk Autopilot [21]

3.3.3 Sonar Sensor

The sonar sensor selected for this research effort was the MaxSonar MB1202
(shown in Figure 12). This model sensor was selected due to its wide beam width and
through ground testing proved to give a consistent return on an X8 quad out to 4.5
meters. This sensor also incorporates the use of the 12C communication protocol which

allowed seamless integration with the Pixhawk Autopilot.

26

Figure 12. 12CXL-MaxSonar®- EZ™ Series MB1202 [25]

3.4 Procedures and Processes

This section describes how the hardware and software work together to control
the follower UAVs position and separation distance. Also, a description of the flight tests
that were conducted and the analysis technique used to verify the system performance is
discussed in this section. This research project required a formation flight algorithm, a
gimbal mounted sonar sensor and sensor control algorithm, an algorithm to control the

Pixhawk autopilot’s response to the sonar input, flight test verification, and data analysis.

3.4.1 Algorithm

This research began with the algorithm developed by Gray as a baseline [5]. In
Gray’s algorithm, the lead UAVs telemetry is transmitted down to the ground station,
where the algorithm uses this data to calculate the follower UAVs new flight path. Once
the new flight path is calculated, the algorithm sends a new way point to the follower
UAYV, which aligns the follower UAV correctly with the lead UAV. This new way point
is set far enough ahead of the follower UAV that it never reaches the way point before

the next update is sent from the ground station. This algorithm sends an updated way

27

point at a frequency of 8 Hz [5]. Since Gray’s code was written to work with MAVProxy,
it had to be modified to work with the new developer software called DroneKit [5].

With the modified Gray algorithm as the foundation, new code had to be written
to incorporate the use of the follower UAV’s on board sonar sensor [5]. A detailed
discussion of how the sensor is integrated both physically on the UAV and into the
software will be discussed in later sections. This system architecture is graphically
depicted in the operational view (OV-1). This OV-1 was modified from Gray to

incorporate the sonar sensing capability of the follower UAV and is depicted in Figure 13

[5].

. Un manne
. Vehicle Team

N .:'__\ N ‘ GCS &
" .‘ Operator

Figure 13. Modified OV-1 from Gray [5]

28

The communication architecture that was used in this research is detailed in the
Department of Defense Architecture Framework (DoDAF) System Interface Description

(SV-1) shown in Figure 14.

Leader UAV

4 -\

S00MHz 30R

|

Mission
USB Planner

S00MHz 30R

|

use

Drone Kit
Leader
Drone Kit Gray's
900MHz 30R Follower Algorithm

Mission Sonar
UsB Planner Algorithm

Figure 14. SV-1 (System Interface Description)

For the lead UAV, this architecture used two 900MHz telemetry radio links,
utilizing both the telemetry 1 and telemetry 2 ports on the Pixhawk autopilot. The
telemetry 1 port was connected to DroneKit on the ground station computer and
communicates the leaders telemetry with the follower UAV’s instance of DroneKit. The
telemetry 2 port was connected to Mission Planner on a backup ground station computer.
This link was a safety requirement to allow a dedicated operator to monitor the health of

the lead UAV, and if necessary provide control inputs.

29

The follower UAV utilized a single 900 MHz link to the main ground station
computer. MAVProxy was then used to split this telemetry stream to the follower’s
instance of DroneKit and Mission Planner. This instance of Dronekit was used to run the
modified version of Gray’s algorithm and communicate with the second instance of
DroneKit [5]. Mission Planner was used to run the sonar algorithm script.

Each of the 3 scripts, Leader, Follower, and Sonar, were run at different
frequencies. The Follower script was run twice as fast as the Leader script. This was done
to keep the leaders GPS points from stacking up in the UDP. The Sonar script was run at
2.2 Hz. This frequency allowed the sonar adequate time to take the 10 sonar readings
with a 50ms pause between each reading. Table 4 shows the 3 scripts with their specific

control loop frequencies.

Table 4. Control Loop Frequencies

Control Loop Frequency
Script Frequency (Hz)
Leader 4
Follower 8
Sonar 2.2

3.4.2 Sonar Sensor Mounting

The sonar is mounted on the follower UAV and is set up on a 2 axis gimbal. The
gimbal set up allows the sonar to search for the lead UAV. With the dynamic nature of
flight, compounded with the error associated with GPS and the beam width of the sonar
sensor, it was necessary to develop a way to have the sonar search the area in front of the

UAV. This set up is shown in Figure 15.

30

Figure 15. Sonar Gimbal Set Up

When the sonar sensor is receiving a return from the lead UAV, the gimbal is stationary.
It is only when the sensor fails to receive a return does the gimbal activate. When no
return is received, the gimbal begins a figure 8 search pattern. During this search, the
algorithm does not command Pixhawk to adjust the velocity of the UAV. This figure 8
search pattern continues until the sonar receives a return. Once a return is received, the
gimbal stops moving, holds its current position, and the Pixhawk begins adjusting the
UAYV velocity accordingly.

The gimbal figure 8 search pattern consist of 12 points. Each of these 12 points is
reached by commanding a specific pulse width for both the pan and tilt gimbal servos.

This search pattern is described graphically in Figure 16. Each point, represented by a

31

star, is the position that the gimbal stops to allow the sonar to take a reading. Once the

gimbal hits point 12, the pattern repeats.

3

*

4
—

|

1

11

Figure 16. Gimbal Figure 8 Search Pattern

The gimbal allowed the sonar coverage areas to be increase by 43%. This increase
in coverage area is shown in Figure 17. The green circle represents the sonar’s field of
view at any given time. The orange area represents the field of view that is covered by
gimballing the sonar. The field of view was restricted to this orange area due to the
location of the gimbal on the X8. This restriction ensured that the sonar was not affected

by X8 airframe or propellers.

32

—— 180cm ——m

Figure 17. Sonar Coverage Area

3.4.3 Sonar Algorithm and Pixhawk Autopilot Response

The Pixhawk Autopilot monitors the reading from the sonar sensor, and based on the
reading, it responds by controlling the airspeed or groundspeed of the follower UAV. The
Pixhawk autopilot response to the sonar sensor input was divided into three basic
possibilities. These three possibilities are: 1) attract, 2) monitor, and 3) repel. When the
sonar sensor indicates that the UAV is too far from the leader, the Pixhawk commands
the UAV to increase velocity (1. Attract). When the sonar senor indicates that the
following UAYV is within a specified range from the leader, the Pixhawk maintains the
current velocity (2. Monitor). When the sonar sensor indicates that the UAV is too close,
the Pixhawk commands the UAV to decrease velocity (3. Repel). This algorithm is

depicted in Figure 18.

33

Figure 18. Pixhawk Response Algorithm

The idea for this algorithm came from the work of Pendelton and Goodrich who used
Couzin’s flocking model [26], [27]. The levels at which the follower’s velocity is
adjusted is a function of the distance follower is from the leader. The DoDAF
Operational View, OV-5b, of the sonar algorithm can be seen in Figure 19. Figure 19
shows the complete algorithm architecture with more detailed views of sections of the

diagram shown in Figure 20, Figure 21, and Figure 22.

34

%?' i gz i |pEs 3'
il 31 B 3] HL
i 5

I I B

& £z
s i
i £

L
§F
i
1]

Figure 19. OV-5b (Sonar Algorithm Activity Diagram)

35

In Figure 20, the initiation of the script is depicted by the blue dot. Once the script
is started, the algorithm sets an initial waypoint navigation speed of 2.5m/s, centers the
gimbal, and sets the minimum and maximum allowable navigation speeds, Om/s and 5m/s
respectively. Once these variables are set, the control loop begins. The sonar reading is
checked and if the reading is greater than 4.5m, the gimbal begins to step the sonar
around a figure eight pattern, pausing at each step to check the sonar reading. This loop is

exited once the sonar reading drops below 4.5m.

]
Figure 20. OV-5b Detail View 1

Now that the gimbal has adjusted the sonar to locate the leader, the gimbal is frozen in
that position. Now an average of 10 sonar readings are taken over a 0.45 second period.

These steps are shown in Figure 21.

36

— |

. Freeze Sanar) Sleep 0.05 Average
- 3 -— d 2 Val = (L RV 3 \ar C
E_’ Gimbal Reading Store Value Seconds sona

Readings

Figure 21. OV-5b Detail View 2

This average sonar reading falls into one of five categories, shown in Figure 22. The
speed adjustments were divided into these categories, versus creating a linear function,
due to the Pixhawk restricting the velocity adjustment resolution to 0.5m/s. After the
appropriate speed adjustment is determined, a check is completed to ensure this
adjustment will not cause the new navigation speed to fall outside of the set limits. If this
desired change is within limits, the new commanded navigation speed is then written to
the autopilot. If the new desired speed is outside the predefined limits, no change in

navigation speed will be written to the autopilot.

37

Increase

" Velocity 1m/s

Increase
——*—> |\elodty ——3
0.5mi's

Ves

Mo Change
I Commanded l

_— Check
; '-;ZI\:{.'-' _ 2 Mo Change in_ o Changein -
Read Velocity Velocity not
ngs exceed |imits
’ P Commanded e _1
R Velodty —'{0ie Chonse
Change :
Decrease
—*—> \elotty ———
0.5mi's

Ll Decrease
Velocity Im/s

Figure 22. OV-5b Detail View 3

3.4.4 Flight test

A series of flight tests were conducted at an altitude of 10m above the ground. The
lead UAV was commanded to fly a basic rectangular waypoint pattern, shown in Figure
23, with a velocity of 2 m/s. The followers route and velocity was controlled

autonomously by the algorithms.

38

(R I V/AYPOINT v ([

: (oo |

CO WAYPOINT [

Figure 23. Leader Waypoint Pattern

During all flight test, data was collected on the GPS position, altitude, and velocity of
the leader, as well as the GPS position, altitude, velocity, sonar reading, and commanded
velocity of the follower. This data was collected at a rate of 2Hz and was time stamped

for comparison between the two vehicles.

3.4.5 Data Analysis
The data collected was used to determine the position error of the follower UAV.

The analysis technique used was Root Mean Square Deviation (RMSD). RMSD allows

39

the average position error to be calculated by using the UAVs actual position and the
UAVs desired position for each time step. The equation for RMSD is shown in

equation 1.

RMSD = \/Z?=1(y(t)—y(t_obs))z .

n
In the RMSD equations, y(t) is the desired position of the follower UAV at that time,
y(t_obs) is the actual position of the follower UAV at that time, and n is the number of
data points. The RMSD results were then compared to the RMSD results from Gray’s test
flights to determine if the incorporation of the sonar sensor decreased the observed

position error of the follower UAV [5].

3.5 Summary

This chapter detailed the materials and equipment needed for this research and
discussed the procedures and processes used in order to conduct this research. Chapter 4
will discuss the ground tests, flight tests, and analyze the results by comparing the

position error of this research with the previous flight test conducted by Gray [5].

40

IV. Results and Analysis

4.1 Chapter 4 Overview

This chapter describes the ground tests that were accomplished, the multiple flight
tests using two X-8 quadrotors, analyzes the position error results of each flight, and
compares this research flight test results with the sonar, to the previous work without the

sonar.

4.2 Ground Tests
This section describes the ground tests that where conducted leading up to the
flight tests. The ground tests included a sonar range test, a sonar algorithm test, and a

guided position algorithm test.

4.2.1 Sonar Range Test

Ground tests of the sonar was conducted to determine the max effective range of
the sonar when getting the return from the lead X-8 quadrotor. It was theorized from the
beginning of this research that the sonar’s range would be reduced due to the limited
amount of reflective surface area of the lead quadrotor. Three Maxbotics sonar models
were tested during the ground test, the MB1020, MB1260, and MB1202.

The ground test was conducted by hanging an X-8 quadrotor from a tree
approximately 5 feet off the ground. The quadrotor needed to be off the ground to ensure
the sonar return was from the quadrotor itself and not the ground. Two variations of this
test where conducted. The first was using the stock X-8 and the second test modified the

X-8 by adding an additional 50 square inches of aluminum foil. These tests

41

configurations can be seen in Figure 24 and Figure 25 respectively. The ground test

results are shown in Table 5.

Figure 25. Modified X-8 Quadrotor

42

Table 5. Sonar Ground Test Results

Sonar MB 1020 | MB 1202/1260
Stock X8 1.6m 3.2m
Modified X8 2.1m 4.6m

The range at which the sonar could detect the X-8 was reduced from the published
ranges for each model. This was due to the limited amount of reflective surface area on
the X-8 and the published max ranges for the sonar are for man sized targets. The
MB1020 was only able to see the stock X-8 out to 1.6m and the modified X-8 only
increased the max effective range to 2.1m. This test verified that the MB1020 was not
going to have sufficient range for this research effort. The stock X-8 allowed the
MB1202 and 1260 sonars to have a max effective range of 3.2m, whereas the modified
X-8 increased the sonars effective range to 4.6m. The MB1202 sonar was selected over
the MB1260 because the MB1202 allows for 12C communication with the Pixhawk,
whereas the MB1260 requires the use of the analog port.

The aluminum foil increased the sonars range by 30.4%. Due to this increase in
the sonars effective range, the lead X-8 quadrotor was modified for flight test by
wrapping aluminum tape around the legs to increase the reflective surface area. This
flight configuration can be seen in Figure 26. Ground test were not duplicated using the
aluminum tape configuration, but flight test show that this configuration was comparable

to the aluminum foil ground test.

43

Figure 26. Lead X-8 with Aluminum Tape

4.2.2 Sonar Algorithm Ground Tests

Once the sonar algorithm was written, it was ground tested to ensure proper
function. A ground test set up utilizing the sonar, gimbal, and the Pixhawk autopilot was
built for this purpose. This set up can be seen in Figure 27. The verification of the
algorithm was accomplished by systematically stepping through the response at various

sonar readings. The ground test matrix is shown in Table 6.

Figure 27. Sonar Algorithm Ground Test Set Up

44

Table 6. Sonar Algorithm Ground Test Matrix

Sonar Ground Test Matrix
Target Range Response
Gimbal Stationary
Average of 10 readings over 0.5 Seconds
Range >=3.25m
1. Increase Speed by 100cm/s
2. Check to ensure new speed does not
exceed max airspeed
3. Write new airspeed to autopilot

3.05m <= Range < 3.25m

1. Increase Speed by 50cm/s

2. Check to ensure new speed does not
exceed max airspeed

3. Write new airspeed to autopilot

Sonar <= 4.5 m (Target

2.95m <=R <3.05
Within Range) m ange m

Continue to Monitor Sonar Range

2.75m <= Range < 2.95m

1. Decrease Speed by 50cm/s

2. Check to ensure new speed does not go
negative

3. Write new airspeed to autopilot

Range < 2.75m

1. Decrease Speed by 100cm/s

2. Check to ensure new speed does not go
negative

3. Write new airspeed to autopilot

Sonar > 4.5 m (Target [Move Gimbal in figure 8 pattern until Sonar
Out of Range) <=45m

The output of each test was printed to the Mission Planner command screen for
verification. Screen shots of one of these tests can be seen in Figure 28 and Figure 29.
From Figure 28, it can be seen that as the sonar reading changes, the new assigned trim

airspeed is changed based on the distance. Figure 29 shows that the minimum airspeed

45

check was working properly. Even though the sonar indicates the following vehicle is too

close to the leader, the algorithm does not allow the vehicle to be slowed anymore.

() ScriptConsole - Run 2 — O X

Print statements in the python code will print to this
dialog baox

;| |H:| ann r'lr'il:li-'E'j
Awverage Distan:
s |:|r|H:| Trim A rur'sp

sign ned Tnm Airspee
r Average Distan:

Azl u~|:| Tnm Airspe
Sonar Average Distance
Trim --Jr's|:n---|:| iz at Mzdmum
i|'|r|:|r A erage Distance

F-jrsp

) r|:|r -“u-'l_:u:ll-' Distance

Autoscroll

Figure 28. Sonar Algorithm Outputs

46

() ScriptConsole - Run 3 — O X

Print statements in the python code will print to this
dialog box

Sonar Average Distance: 1.422
Trim Airspeed is at Minimum

Sonar Average Distance: 2.005
Trim Airspeed is at Minimu

Sonar Average Distance: 5.3593
MNew Assigned Trm Airspeed: 200.0
Sonar Average Distance: 2.718
Mew Assigned Trim Airspeed: 100.0
Sonar Average Distance: 2.718
Trim Airspeed is at Minimum

Sonar Average Distance: 2.59

Trim Airspeed is at Minimum

Sonar Average Distance: 2.59

Trim Airspeed is at Minimum

Autoscroll

Figure 29. Sonar Minimum Airspeed

The sonar algorithm was verified again in a flight test to ensure when the sonar
commanded a change in speed, the aircraft would respond. This flight test hovered one
X-8 quadrotor, 2m off the ground, and commanded it to navigate towards a wall. Once
the sonar detected the wall, the algorithm was able to slow the X-8 quadrotor, avoiding a
collision with the wall. The minimum speed was set to Om/s for all flight test. Quadrotor
aircraft have the ability to backup and this characteristic could prove useful is some test,
but this was not required for this research since Gray’s guided point algorithm is a
function of velocity [5]. If the leader stops, the follower will slow to a stop as well and

position itself the desired distance behind the leader.

47

4.2.3 Guided Position Algorithm Ground Test

The guided position algorithm was originally developed by Jeremy Gray for use
with MAVProxy, but had to be modified to be used with DroneKit [5]. Once the code
modification was complete, it was ground tested in two phases to verify functionality.
The first phase was a desktop test to ensure data was being passed from the leader to the
follower. The second phase tested the accuracy of the new guided position commanded
by the algorithm.

For the first phase, two autopilots with their associated modems were connected
to the ground station computer. The ground station operator then ran the code to split the
follower’s telemetry using MAVProxy. Once the signal was split, the follower’s script
was executed in DroneKit and the MissionPlanner was connected to the other signal.
Finally, the leader’s script was run in the second instance of DroneKit. When the leader
was connected to DroneKit, it began sending its telemetry to the follower and the
follower began sending new commands to the autopilot. A screenshot of this test can be
seen in Figure 30. The lower right command window is the leader’s DroneKit instance.

The lower left command window is the follower’s DroneKit instance.

48

5
13:56:44

8

0
3
0

Stabilize
gD

=

C:\Program Files (x86)\MAVProxy>mavproxy.exe _-master="comé” --baudrate 57600 --out 127.0.0.1:14550 --out 127/
1

e onnect comé source_system=255 .

- ing script C:\Users\Rob Mcanahan\AppData\Local\r-mVPr-o)-:y\mavmlt.scr

- t moddebug 2
-> module load graph B C\WINDOWS\system32\cmd.exe - flocking_leader.py

C:\Python27\Scripts>flocking_leader.py
>>> ArduCopter V3.2.1 (36b4@5fb)

>>> PX4: ce6@2658 NuttX: 475b8c15
>>> Frame: OCTA_QUAD

>>> PX4v2 9032001A 3432470B 38383538
>>> PreArm: Need 3D Fix

Leader Vehicle Object Created
telemetry file open

socket created

starting control loop

telemetry sent & stored: 13:
telemetry sent & stored:

telemetry sent & stored:

telemetry sent & stored:

telemetry sent & stored:

telemetry sent & stored

Figure 30. Phase 1 Guided Algorithm Ground Test

Phase two of the guided algorithm ground test was used to verify the follower’s
script commanded the correct guided position based off the leader’s telemetry. To
accomplish this test, the leader and follower X-8 quadrotors where placed outside. The
follower algorithm was set to keep a 3m standoff from the leader. Once the algorithms
were running, the lead quad was walked around an area as if it was flying a waypoint
pattern. The leader’s position was then compared with the commanded guided position of
the follower. These results can be seen in Figure 31. The commanded guided position had
an average separation distance of 3.005m with a standard deviation of 0.279m. One

would expect the commanded guided position to always be exactly 3m from the leader,

49

but this was not the case. This error is a function of the lag in the system, measured by

Gray at 0.46s [5]. As expected, the largest error in the commanded guided position occurs

when the lead UAV makes a sharp turn.

Guided Position Ground Test

-84.1818
North >
® o
-84.18185 *
dor 2 o ® ooq 0‘
sqe dooesle 'y
0qe, 9"V, "
o -84.1819 PRS et X S
'g L J ‘. ‘
= % o e
o
S 8
3 84.18195 ¢ ®
[§ N, *‘0’ .o
$ ¢ “.8 ‘“‘ ’ *
o0 *
-84.182 (3 o
O o et e
. oo ®%,
¢ o
-84.18205
39.68935 39.6894 39.68945 39.6895 39.68955 39.6896 39.68965 39.6897
Latitude

@ Leader (log) @ follower(log)

Figure 31. Guided Position Ground Test

4.3 Flight Tests and Results

Multiple flight tests were conducted during the course of this research. The initial

flight was flown with a 4m desired separation distance between the leader and follower to

ensure the system was functioning properly. Once the system was proven, the remaining

flight tests were flown with a 3m desired separation distance between the leader and

follower. All flight tests were flown with a typical racetrack pattern at an altitude of 10m

50

above ground level (AGL). The average separation distance, RMSD, and standard

deviation of the follower X-8 is analyzed for each flight.

4.3.1 Initial 4m Separation Flight Test

It was known from the beginning that the 4m flight test would be pushing the
boundaries of what the sonar could detect. However, it was important to test the full
system functionality at this greater separation distance to give the safety pilots more time
to respond and keep the quadrotors from having a mid-air collision. No sonar data was
collected during this flight due to the python script not saving that particular variable. It
was initially thought the sonar data could be taken directly from the Pixhawk telemetry
file for comparison; however, this procedure proved difficult to match the sonar output
with the corresponding GPS position. This code was updated in later flight tests to
include the sonar data and commanded way point navigation speed. It was visually noted
that the sonar was getting a return from the leader at times during this 4m flight test. A

picture taken during the 4m flight test can be seen in Figure 32.

Figure 32. 4m Test Flight

51

The results of the 4m flight test can be seen in Figure 33 and

Table 7. Figure 33 is a plot of the GPS location of both the leader (blue) and the
follower (orange). This plot visualizes the location of each X-8 during the flight and
shows that the follower X-8 was indeed able to follow the leader. Note the undesired

offset in the follower’s position when the leader was traveling on a North/South

vector. This offset was not initially noticed during the 4m flight test, but was

recognized during the following 3m flight test and is discussed in that section.

Table 7 displays the key results of this test. It was expected that the RSMD for this flight

would be highest, since the sonar was not playing an active role during this test.

4m Flight Test

-86.0088
North >
-86.0089 ’"‘l -~
Maag 7 W TSR

-86.009
[}
e}
2
% -86.0091
S ‘.’

-86.0092 g,

hadaud RN
-86.0093 \\
-86.0094
39.3436 39.3438 39.344 39.3442 39.3444 39.3446 39.3448 39.345

Latitude

® Leader @ Follower

Figure 33. GPS Track from 4m Flight Test

52

Table 7. 4m Flight Test Results

4m Flight Test
Average Separation Distance | 7.67m
RMSD | 4.76m
Standard Deviation | 3.02m

The X-8s were never in danger of a mid-air collision. With this successful test, the
desired separation distance was reduced from 4m to 3m for the remainder of the flight

tests to allow the sonar to influence the position of the follower X-8.

4.3.2 3m Separation Flight Tests

Flying with a desired separation distance of 3m allowed the sonar to frequently
calculate the distance the follower was from the leader resulting in constant velocity
adjustments to keep the follower at the set separation distance. A series of flight tests
were conducted at 3m. The initial 3m flight test uncovered a problem with the guided

point algorithm. A picture of a 3m flight test can be seen in Figure 34.

Figure 34. 3m Test Flight

53

4.3.2.1 Initial 3m Flight Test

The first flight test flown with a 3m desired separation distance uncovered a
problem not noticed during the previous test or ground testing. The follower vehicle was
positioned offset from the leader, but only when traveling North or South. When the
leader was traveling East or West, the follower was tucked in correctly behind the leader.

This phenomenon can be seen in the GPS plot of each vehicle shown in Figure 35.

3m Separation Distance with North/South Offsets

-86.0088
-86.00885 North >
-86.0089
-86.00895
0%
-86.009
()]
S -86.00905
=
£ -86.0091 '.
—
-86.00915 *
*
-86.0092 $
-86.00925 0 P rion 4 oo 08
-86.0093
-86.00935
39.3436 39.3438 39.344 39.3442 39.3444 39.3446 39.3448 39.345

Latitude

@ Leader (log) @ follower(log)

Figure 35. North/South Offsets

This offset created two problems with the system architecture. The first issue was
the safety pilot had to take control of the following vehicle frequently when the lead
vehicle initiated a turn due to the fact that the lead vehicle would turn in front of or cut
off the follower. The second issue that arose was that with the north/south offset, the

sonar was not able to frequently detect the distance from the lead vehicle unless the

54

vehicles were traveling east or west. Despite these challenges, the results shown in Table
8, do show a decrease in the RMSD when compared to the 4m flight test. This is due to
the fact that the sonar was able to adjust the velocity of the following X-8 on more

occasions.

Table 8 Initial 3m Flight Test

Initial 3m Flight Test
Average Separation Distance | 6.51m
RMSD | 2.55m
Standard Deviation | 2.51m

Two other issues were also noted during this test flight. First, at times the follower
X-8 would fly sideways behind the lead X-8. With the follower X-8 flying sideways,
there was no chance for the front mounted sonar to measure the distance to the leader.
The other problem noted was the lead X-8 was not holding the desired altitude of 10m.
Randomly it would lose over a meter of altitude which put it out of the field of view of
the follower’s sonar.

The root cause of this North/South offset was discovered and corrected in the
guided algorithm code. The error was in dealing with the way the offset angle was
defined in Gray’s code [5]. The reference needed to be rotated by 90 degrees to make it
relative to East. The reason this error only showed itself when traveling North or South
was because for this research the offset angle was set at 0 degrees. In addition, a fresh

compass calibration as well as a gain tuning flight was completed on both X-8s.

55

4.3.2.2 Final 3m Flight Test

With the guided point algorithm corrected and the other adjustments complete, the
final 3m flight test was conducted. The GPS plot of this flight can be seen in Figure 36.
From this figure, notice that the follower is now directly in line with the leader at all

times throughout the flight.

Final 3m Flight Test

-84.2024
-84.2026
-84.2028

-84.203

-84.2032

Longitude

-84.2034

-84.2036

North >

-84.2038
& o W

-84.204
39.8097 39.8098 39.8099 39.81 39.8101 39.8102 39.8103 39.8104

Latitude
@ Leader (log) @ follower(log)

Figure 36. Final 3m Flight Test

In Figure 36 it is impossible to graphically discern how close the follower is to the
leader at any point during the flight. This is due to the 2hz frequency that the GPS
position data was collected and plotted. In Figure 37, the frequency of the data displayed
in Figure 36 was reduced to approximately one data point every 10 seconds and the
distance between the two vehicles is displayed between the data points. This reduction in
the data rate allows for an easy visual comparison of the leader and follower’s position

during the flight. From Figure 37, the follower was able to closely follow the leader and

56

remained in line directly behind the leader to give the sonar the best chance at detecting

the distance to the lead vehicle.

-84.2024

-84.2026

-84.2028

-84.203

-84.2032

Longitude

-84.2034

-84.2036

-84.2038

-84.204
39.8097

Position at Matching Time
(Separation Distance in meters)

3.61
2.78 o © 2.97
* *e
IS
°
3.21 3.86
*® o
3.32
3.12
)
*
°*
3.18
2.94
®
° 4 North >
255 * o
: ® o5 3.65
3.62
39.8098 39.8099 39.81 39.8101 39.8102 39.8103 39.8104

Latitude
@ Leader (log) @ follower(log)

Figure 37. Position at Matching Time

With the follower now directly behind the leader, the follower’s sonar was able to

more reliably detect the distance from the lead X-8. The raw sonar data from this flight is

shown in Figure 38. The sonar defaults to the value of 7.6m when no signal return is

detected and therefore no distance is measured. Any value below 7.6m, is the measured

distance from the leader. From this figure, the sonar was able to detect the distance from

the lead X-8 throughout the flight.

57

Sonar Measurement

9
8
W~~- G0 THEPEY (¥ G HH{PEEEED OCe(({({E({I@ (Wve G W
[(X J
—6 & ® @ e
E o oo 00 o L ° ® ’03, ° o ®
o 5 o © ® ©°) ° ®
(%)
& 4 e 0 o ® [® °®
£ o & [) (]
83 ® ® ® ® °
° L d °
2
Ll ® «* ° L4
[J @ @
0
0 50 100 150 200 250

Time (s)

Figure 38. Raw Sonar Data

Due to the ability of the sonar to measure the distance the follower was from the
leader, the sonar algorithm was able to adjust the follower’s velocity in an attempt to
maintain the desired separation distance of 3m. This adjustment in the follower’s velocity
is shown in Figure 39 and Figure 40. In these figures, the blue-dashed line is the
commanded way point nav speed that is adjusted by the sonar. The red line is the actual
ground velocity of the follower vehicle. From these plots, by adjusting the way point nav
speed of the follower vehicle, the sonar algorithm is able to modify the velocity of the
follower vehicle to maintain the desired separation distance from the leader. It is also
noted that the actual ground speed occasionally lags behind the commanded speed. This
is caused by a couple factors. First, the follower vehicle is occasionally way point
limited. This occurs when the leader slows down and causes the desired follower position
to be close enough to its current position that the follower reaches the desired waypoint

and begins to slow to a hover prior to getting an updated desired GPS point. This

58

phenomenon can be seen graphically in the middle of the plot on Figure 40. The second
reason for this lag is internal to the autopilot. It was noted during testing that at times the
follower would not adjust its velocity even though it had a commanded change that was
written to the Pixhawk. It was as if the Pixhawk was busy with other tasks and would

take a few seconds before it executed the commanded change in velocity.

WP Nav Speed v Ground Speed (m/s)

2.5

Velocity (m/s)

0.5

1 35 7 911131517192123252729313335373941434547495153555759616365676971
Time (2 Hz)

= «= == \\/P Nav Speed Ground Speed

Figure 39. Waypoint Nav Speed versus Ground Speed (Plot 1)

59

WP Nav Speed v Ground Speed (m/s)

»
A Uow

w
"

Velocity (m/s)
N
N (O]

=
6]

[EEN

0.5
0
N M OO !N A NM 00N AN N AN N AN 0N AN
I NN TN O ONNO0OO0OOOOOO A N AN M <& N n O W
D B e B T B o R B o R B O o |
Time (2 Hz)

= «= == \\/P Nav Speed

Ground Speed

Figure 40. Waypoint Nav Speed versus Ground Speed (Plot 2)

The position error, is the difference in the actual separation distance from the desired
separation distance. The follower’s position error throughout the flight can be seen in
Figure 41. This is the deviation from desired offset of 3m. The desired position error
value is Om; when the position error is positive the follower quad is too far from the

leader and when the position error is negative, the follower is too close to the leader.

60

175
181
187

--‘

Position Error (m)

N W s~

Error (m)
=

Time

Figure 41. Follower Position Error

With the sonar now playing an active role in the system. The results were much
improved over the previous flight tests. The RMSD was reduced by 56.5% from the
initial 3m flight test and the average separation distance was reduced from 6.51m to

3.08m. The results are shown in Table 9.

Table 9 Final 3m Flight Test Results

Final 3m Flight Test
Average Separation Distance | 3.08m
Average Position Error | 0.896m
Standard Deviation | 1.11m
RMSD | 1.11m

With the system architecture functioning as designed, it was time to compare these flight

test results with the flight test results accomplished by Gray [5].

61

4.4 Flight Test Results Comparison

The flight test results of this research were compared to the previous flight tests
without onboard sensors to quantify how much the COTS sonar sensors increased the
cohesion of the formation flight by reducing the follower’s position error. Since Gray’s
flight tests use the same guided position algorithm, the same X-8 airframes, but no
onboard sensor for real time distance error measurement, this assessment shows how
position error was effected by incorporating the sonar sensor.

For this evaluation, the position error from Gray’s flight with the least amount of
position error was selected [5]. The complete results table from Gray’s work is shown in
Table 10 [5]. This research used the distance error root mean square (DRMS) from test 2.
Test 2 was selected because it had the lowest position error of the six tests that Gray

completed using two X-8 quadrotors [5].

Table 10 Gray's X-8 Quadrotor Results [5]

- Forward Error (m) - Right Error (m) Position Error (m)
Test V T o | DR.\IH‘V It o DRMS | p o DRMS
1 -1.76 | 1.58 1.94 0.60 1.62 1.41 345 1.11 297
2 -1.80 | 1.18 1.21 0.70 0.85 0.62 3.08 0.63 1.77
3 -1.00 | 1.33 1.34 0.49 1.29 i 2.85 1.32 2.53
4 -2.92 | 1.92 2.64 -0.81 | 2.25 1.80 5.08 216 | 4.17
5 -2.54 | 1.56 2.44 -0.01 | 1.18 0.96 3.94 1.68 3.51
(] -2.44 1.78 2:21 -0.67 | 1.97 1.52 4.47 2.29 3.67

For visual flight test comparison, Figure 42 displays the position error of both Gray’s
flight and the 3m sonar flight [5]. The blue line is the position error of the follower X-8

quad during Gray’s test, the red line in the position error of the follower X-8 quad during

62

the sonar test, the dashed black lines represent the mean position error of each flight test.
Note that the desired position error is Om for both tests. From this figure, Gray’s flight
test resulted in a mean position error of 3.08m and was always too far away from the
leader. At no time during Gray’s test was the position error negative, indicating that the

follower was too close. The 3m sonar flight test resulted in a mean position error of

0.89m.
5[reerd| = Emor
===-mean: 3.08
45 SR S e standerd devistion: 0.62626)
4 /’1 4a \//1 a',\
r — & e
i /NS = - AV Y S W =T\
2l
16—
N e K A Eey entny G | S |
06— l
° |ér b 1115 | ‘ 1
0.5 =]

Position Error (m)

Figure 42. Position Error Comparison

This research effort was able to reduce the RMSD by 37.3% and the average position
error by 70.9% when compared to Gray’s flight test [5]. These results are tabulated in

Table 11.

Table 11. Flight Test Comparison

% Error
Gray Sonar Reduced
RMSD (m) 1.77 1.11 37.3
Average Position Error (m) 3.08 0.896 70.9

63

V. Conclusions and Recommendations

5.1 Chapter Overview

This chapter answers the initial research questions, discusses the system

limitations, outlines the recommendations for future research, and finally explores what

steps would be needed or what technology gaps exist in current COTS components to

allow this low-cost system to be implemented.

5.2 Research Questions Answered

The research questions that this investigation initially set out to answer are listed

and discussed in this section.

What onboard sensors are available with low weight and low power

consumption for use in UAV swarms?

Available sensors include optical, sonar, and light detecting and ranging
(LiDAR). Each of these sensors have strengths and weakness that were discussed
in detail in chapter 2, section 2.4. Sonar was chosen due to its wider beam width,
and ease of integration with Pixhawk autopilot. This low power sonar was
extremely limited in range. For this research, the sonar was only able to reliably
detect the leader out to a distance of 4.5m. The sonar was extremely effective at
close range, as seen in Figure 41, the sonar and algorithm never allowed the
follower to get closer than 1m from the leader. Unfortunately, the sonar’s limited
detection range allowed the leader to drift far away from the follower. At one

point, the follower was just over 7m away from the leader. Since the sonar could

64

not detect the leader at these distances, no change in the follower’s velocity was
commanded. Ideally the sensor range would need a to be doubled to allow the

sensor algorithm adequate time to adjust the follower’s velocity.

What swarm algorithm modifications are required to incorporate onboard
sensing?

The onboard sensing algorithm was run separate from the guided positon
algorithm directly in Mission Planner. This was done to allow the sonar algorithm
to run at a higher frequency and permit the sonar to constantly be searching for
the lead vehicle. This architecture required an extra script to be ran to control the
sensor package subsystem. One limitation with this setup is that DroneKit would
not run in conjunction with MissionPlanner. MavProxy was used to split the
follower’s communication stream to DroneKit and MissionPlanner. Using
MavProxy as the middle man, allowed DroneKit and MissionPlanner to run at the

same time.

How are the onboard sensors integrated with the Pixhawk autopilot?

The sonar can integrate directly with the Pixhawk either through the ADC
(Analog Digital Converter) port or through the 12C port. For this research both the
ADC and the 12C port were used during ground testing, but the 12C port was
utilized for all flight test. This integration was straight forward. The

MissionPlanner GUI has built in functionality to work directly the MaxSonar.

65

How can the Pixhawk autopilot take advantage of the onboard sensor data?
The Pixhawk used the onboard sensor (sonar) data to adjust the X-8s velocity in
an attempt to keep it at the desired separation distance. The sonar range reading
was divided into three sectors; attract, monitor, and repel. Each sector provided a
different response for the Pixhawk. This is discussed in detail in chapter 3,
section 3.4.3. A limiting factor in this setup is that it is assumed that the follower
is always directly behind the leader. Future iterations could use the gimbal
position to get a vector to the leader and adjust more than just the follower’s

velocity. This approach would require a sensor with a narrower beam width.

How much can onboard sensors reduce offset distances and desired

separation distance errors?

With the use of the sonar sensors, the UAVs where able to fly at the same altitude,
which was not attempted in the previous flights conducted by Gray for fear of a
midair collision. The use of the sonar reduced the RMSD position error by 37.3%
when compared to the previous flight test conducted by Gray [5]. On average
Gray’s position error was 3.08m, whereas the average position error for this
research was just 0.896m, an improvement of 70.9%. This result was discussed in
detail in section 5.2 of this chapter. Even with the limitations of this system, the

onboard sensor demonstrated an improvement in the follower’s position error.

66

5.3 Recommendations for Future Research

There are many areas where this research can be further refined and developed.
However, this research effort can most greatly be influenced in the following two areas:
vehicle to vehicle communication and increasing the range of the onboard sensor.

One limiting factor of this research was the frequency at which the control loops
could be run. The control loops for this research were limited to approximately 8 hz. A
faster control loop frequency would lead to more precise navigation and could reduce
position error, especially during turns. The lag associated with passing all the
communications through the ground station could be reduced by allowing the vehicles to
communicate directly with each other. This would require an additional, low cost, COTS,
onboard processor, like a BeagleBone, on each vehicle.

The other limiting factor in this research was the sonar. The sonar had a max
effective range of approximately 4.5m on the lead quadrotor. This meant that the vehicles
had to be close together before the sonar could influence the formation. By increasing the
max effective range of the onboard sensor, the control algorithm could more precisely
regulate the separation distance, particularly when the closure rate is high or when the

vehicles drifted apart. A more powerful sonar could be a viable solution.

5.4 System Implications

This research provided a proof of concept that a low-cost solution for UAV
formation flight and swarming is within reach with current COTS technology. This low-
cost COTS formation flight architecture could allow groups of small, attritable, UAVs to

perform formation flights and swarming behavior. This particular architecture is suitable

67

for missions that allow or tolerate position errors of approximately one meter. To fully
migrate this research architecture into the Air Force’s arsenal there are a few performance
shortfalls that would need to be addressed. The shortfalls include the sonar sensor,
vehicle to vehicle communication, and GPS error.

For this architecture to be fully mission capable, a more robust sensor would be
required. The greatest limiting factor of the sensor was the range it could accurately
detect the lead UAV. The sonar sensor that was flown for this research effort was limited
to a 4.5m standoff distance. Once the leader was beyond this distance, the sonar was
unreliable. With the sensor being unreliable over 4.5m, no velocity changes were
commanded during this time and thus the position error was not being corrected. The
ideal sensor could detect the leader out to 10m and would have a wider beam width or
use multiple sensors to allow the leader to be tracked no matter its position relative to the
follower.

The position error of the follower vehicle was greatly influenced by the latency of
the communication architecture. The system latency was measured by Gray to be 0.46s
[5]. This latency was most noticeable when the leader completed a turn. By allowing the
UAV’s to communicate directly with each other, the position error could be reduced in
two ways. First, the leader’s GPS position would be more accurate. By the time the
leader’s positon is transmitted to the ground station then analyzed to calculate the correct
follower position, the leader is no longer in that position and the calculated follower
position is inherently incorrect. This is shown graphically in Figure 31. The calculated
desired guided position had a maximum error of 0.9m during a turn. Second, the control

loop could be run at a higher frequency to allow for more accurate follower commanded

68

position. With the leader’s GPS position being more accurate and the control loop
running at a higher frequency, the followers position error and standard deviation would
be reduced.

In addition to the communication latency resulting in desired GPS position error,
the GPS itself has error associated with it. Both the leader’s and the follower’s GPS
sensor error contributes to the position error of the follower. A Real Time Kinematic
(RTK) GPS solution could prove to improve the followers position by reducing the error
associated with both the leader’s and follower’s GPS. Current low cost, COTS, RTK GPS
solutions are not ready to be integrated into a formation flight or swarm architecture.
Ground testing has shown that these GPS units work well in stationary environments, but
quickly lose the RTK solution when one of the receivers is placed on a moving platform.
Once this technology gap is closed, an RTK GPS solution could prove to be invaluable to
low cost formation flight and swarming.

Even with the limitations expressed in this section, this research did show that a
formation flight or swarm architecture could be developed utilizing nothing but low-cost

COTS components.

5.5 Summary

The objective of this research was to investigate the effects of onboard sensing on
UAYV formation flight cohesion by comparing flight test results with and without onboard
sonar sensing capability.

The guided algorithm developed by Gray along with his flight testing results were

used in this comparison [5]. From these results, it can be concluded that the sonar was

69

successful in increasing the cohesion of the formation flight by reducing the RMSD by
37.3% and the average position error by 70.9%. While this system is not perfect, this
research did demonstrate that UAV formation and swarm cohesion can be improved

using low cost, commercial off the shelf sonar sensors.

70

[1]

[2]

3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Bibliography

D. Lamothe, “Veil of secrecy lifted on Pentagon office planning ‘Avatar’ fighters
and drone swarms,” The Washington Post, 2016. [Online]. Available:
https://www.washingtonpost.com/news/checkpoint/wp/2016/03/08/inside-the-
secretive-pentagon-office-planning-skyborg-fighters-and-drone-swarms/.

Y. Gu, G. Campa, B. Seanor, S. Gururajan, and M. R. Napolitano, “Autonomous
Formation Flight — Design and Experiments,” Aer. Veh., pp. 233-256, 2009.

R. Hao, D. Luo, and H. Duan, “Multiple UAVs mission assignment based on
modified Pigeon-inspired optimization algorithm,” 2014 IEEE Chinese Guid. Navig.
Control Conf. CGNCC 2014, pp. 2692-2697, 2015.

K. Osborn, “Swarming Mini-Drones: Inside the Pentagon’s Plan to Overwhelm
Russian and Chinese Air Defenses,” The National Interest, 2016. [Online].
Available: http://nationalinterest.org/blog/the-buzz/swarming-mini-drones-
inside-the-pentagons-plan-overwhelm-16135. [Accessed: 14-Dec-2016].

J. Gray, “Design and Implementation of a Unified Command and Control
Architecture for Multiple Cooperative Unmanned Vehicles Utilizing Commercial
Off the Shelf Components,” Air Force Institute of Technology, 2015.

S. Losey, “Gen. Mark Welsh sounds alarm on undermanned Air Force,” Air Force
Times, 2015. [Online]. Available:
http://www.airforcetimes.com/story/military/2015/12/01/welsh-sounds-alarm-
on-undermanned-air-force/76617202/. [Accessed: 15-Jul-2016].

“Unmanned Systems Integrated Roadmap FY2013-2038,” 2013.

D. J. Nowak, I. Price, and G. B. Lamont, “Proceedings of the 2007 Winter
Simulation Conference S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew,
and R. R. Barton, eds.,” pp. 1315-1323, 2007.

C. W. Reynolds, Flocks , Herds , and Schools : A Distributed Behavioral Model.
1987.

J. N. Kaiser, “Effects of Dynamically Weighting Autonomous Rules In an
Unmanned Aircraft System (UAS) Flocking Model.”

J. L. Lambach, “Integrating UAS Flocking Operations With Formation Drag.”

C. W. Reynolds, Z. Chao, L. Ming et al. “Outdoor flocking and formation flight with
autonomous aerial robots,” ... Robot. Syst. 2005.(IROS 2005). ..., vol. 9, no. 5, pp.
287-300, 2013.

S. K. Lee and J. McLurkin, “Distributed cohesive configuration control for swarm
robots with boundary information and network sensing,” IEEE Int. Conf. Intell.
Robot. Syst., no. Iros, pp. 1161-1167, 2014.

Z. Chao, L. Ming, Z. Shao-lei, and Z. Wen-guang, “Collision-free UAV formation
flight control based on nonlinear MPC,” Int. Conf. Electron. Commun. Control, pp.
1-18, 2011.

D. Luo, T. Zhou, and S. Wu, “Obstacle avoidance and formation regrouping
strategy and control for UAV formation flight,” IEEE Int. Conf. Control Autom.
ICCA, pp. 1921-1926, 2013.

71

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

A. Kim, Seungkeun; Kim, Youdan; Tsourdos, “Optimized Behavioural UAV
Formation Flight Controller Design,” in European Control Conference, 2009.

M. Clement, “From Zero to Fifty Planes in Twenty-Seven Minutes,” DIY Drones,
2015. [Online]. Available: http://diydrones.com/profiles/blogs/from-zero-to-fifty-
planes-in-twenty-seven-minutes. [Accessed: 21-Jan-2016].

A. Zarandy, T. Zsedrovits, B. Pencz, M. Nameth, and B. Vanek, “A novel algorithm
for distant aircraft detection,” 2015 Int. Conf. Unmanned Aircr. Syst. ICUAS 2015,
pp. 774-783, 2015.

N. Cen, K. Cheng, and B. Fidan, “Formation control of robotic swarms based on
sonar sensing,” ISSNIP 2009 - Proc. 2009 5th Int. Conf. Intell. Sensors, Sens.
Networks Inf. Process., pp. 31-36, 2009.

“How does LiDAR work? The science behind the technology,” 2016. [Online].
Available: http://www.lidar-uk.com/how-lidar-works/. [Accessed: 05-Aug-2016].
Pixhawk Autopilot Quick Start Guide. 3D Robotics, 2014.

“Using Python Scripts in Mission Planner,” 2016. [Online]. Available:
http://ardupilot.org/planner/docs/using-python-scripts-in-mission-planner.html.
[Accessed: 30-Jun-2016].

“Mission Planner,” 2016. [Online]. Available:
http://ardupilot.org/planner/docs/mission-planner-overview.html. [Accessed: 05-
Aug-2016].

“3DR X8-M Specifications,” p. 25.

“I2CXL - MaxSonar © - EZ™ Series,” 2012.

B. Pendleton and M. Goodrich, “Scalable Human Interaction with Robotic
Swarms,” AIAA Infotech@aerosp. Conf., pp. 1-13, 2013.

I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, “Collective
memory and spatial sorting in animal groups.,” J. Theor. Biol., vol. 218, no. 1, pp.
1-11, 2002.

72

Appendix A

Sonar Script

import MissionPlanner

Script.ChangeParam("WPNAV_SPEED" ,250) #Initializing with 2.5m/s
NAV speed

sonar = cs.sonarrange # Getting first Sonar
Reading

#print "Sonar Distance: %s® %sonar

Script.SendRC(6,1380,True) #Centering gimbal
Script.SendRC(7,1400,True)
Script._Sleep(500)

Minairspeedms = 0 # Setting Min speed to O
TrimAirspeed = Script.GetParam ("WPNAV_SPEED®) #Getting paramters for NAV
Speed

Maxairspeedms = 5 # Setting max speed to 5

#print "Max Airspeed (m/s): %s® %Maxairspeedms

MaxAirspeed = Maxairspeedms * 100 #Convert min/max airspeed to
cm/s

#print "Original Trim Airspeed: %s® %TrimAirspeed

#print "Minimum Airspeed (m/s): %s® %Minairspeedms

Minairspeed = Minairspeedms * 100

while True:
sonar = cs.sonarrange

while (sonar >=4.5): #Sonar Using Gimbal to Search
sonar = cs.sonarrange

if sonar >= 4.5:
Script.SendRC(6,1330,True)
Script.SendRC(7,1400,True)
Script.Sleep(300)
sonar = cs.sonarrange

if sonar >= 4.5:
Script.SendRC(6,1330,True)
Script.SendRC(7,1500,True)
Script.Sleep(300)
sonar = cs.sonarrange

if sonar >= 4.5:
Script.SendRC(6,1380,True)
Script.SendRC(7,1500,True)
Script.Sleep(300)
sonar = cs.sonarrange

if sonar >= 4.5:
Script.SendRC(6,1400,True)
Script.SendRC(7,1500,True)
Script.Sleep(300)
sonar = cs.sonarrange

if sonar >= 4.5:
Script.SendRC(6,1400,True)
Script.SendRC(7,1400,True)

73

Script.Sleep(300)
sonar = cs.sonarrange

if sonar >= 4.5:
Script.SendRC(6,1380,True)
Script.SendRC(7,1400,True)
Script.Sleep(300)
sonar = cs.sonarrange

if sonar >= 4.5:
Script.SendRC(6,1330,True)
Script.SendRC(7,1400,True)
Script.Sleep(300)
sonar = cs.sonarrange

if sonar >= 4.5:
Script.SendRC(6,1330,True)
Script.SendRC(7,1300,True)
Script.Sleep(300)
sonar = cs.sonarrange

if sonar >= 4.5:
Script.SendRC(6,1380,True)
Script.SendRC(7,1300,True)
Script.Sleep(300)
sonar = cs.sonarrange

if sonar >= 4.5:
Script.SendRC(6,1400,True)
Script.SendRC(7,1300,True)
Script.Sleep(300)
sonar = cs.sonarrange

if sonar >= 4.5:
Script.SendRC(6,1400,True)
Script.SendRC(7,1400,True)
Script.Sleep(300)
sonar = cs.sonarrange

if sonar >= 4.5:
Script.SendRC(6,1380,True)
Script.SendRC(7,1400,True)
Script.Sleep(300)
sonar = cs.sonarrange

#rr*Fxx**xSonar within range. Take avaerage of 10 readings over .45 seconds
if sonar < 4.5:

sonarl = cs.sonarrange
Script.Sleep(50)
sonar2 = cs.sonarrange
Script.Sleep(50)
sonar3 = cs.sonarrange
Script.Sleep(50)
sonar4 = cs.sonarrange
Script.Sleep(50)
sonar5 = cs.sonarrange
Script.Sleep(50)
sonar6 = cs.sonarrange
Script.Sleep(50)
sonar7 = cs.sonarrange
Script.Sleep(50)
sonar8 = cs.sonarrange
Script.Sleep(50)
sonar9 = cs.sonarrange
Script.Sleep(50)
sonarl0 = cs.sonarrange

sonar = (sonarl + sonar2 + sonar3 + sonar4 + sonar5 + sonar6 + sonar7 +

74

sonar8 + sonar9 + sonarl0)/10 # Average Sonar reading over 0.25 seconds
print “Sonar Average Distance: %s® %sonar

if sonar >= 3.25:

currenttrimairspeed = Script.GetParam ("WPNAV_SPEED®)

newtrimairspeed = currenttrimairspeed + 100

#print “"New Airspeed: %s® %newtrimairspeed

if newtrimairspeed >= MaxAirspeed:
print "Trim Airspeed is at Maximum*®

if newtrimairspeed < MaxAirspeed:
Script.ChangeParam("WPNAV_SPEED" ,newtrimairspeed)
TrimAirspeed = Script.GetParam ("WPNAV_SPEED®)
print "New Assigned Trim Airspeed: %s® %TrimAirspeed

if 3.05<= sonar < 3.25:

currenttrimairspeed = Script.GetParam ("WPNAV_SPEED®)

newtrimairspeed = currenttrimairspeed + 50

#print “"New Airspeed: %s® %newtrimairspeed

if newtrimairspeed >= MaxAirspeed:
print "Trim Airspeed is at Maximum*®

if newtrimairspeed < MaxAirspeed:
Script.ChangeParam("WPNAV_SPEED" ,newtrimairspeed)
TrimAirspeed = Script.GetParam ("WPNAV_SPEED®)
print "New Assigned Trim Airspeed: %s® %TrimAirspeed

if 2.95<= sonar < 3.05:
currenttrimairspeed = Script.GetParam ("WPNAV_SPEED®)
newtrimairspeed = currenttrimairspeed
print “New Airspeed: %s® %newtrimairspeed
Script.ChangeParam("WPNAV_SPEED",newtrimairspeed)
TrimAirspeed = Script.GetParam ("WPNAV_SPEED®)
print "Nav Speed Unchanged: %s® %TrimAirspeed

if 2.75 <= sonar < 2.95:

currenttrimairspeed = Script.GetParam ("WPNAV_SPEED®)

newtrimairspeed = currenttrimairspeed - 50

#print “"New Airspeed: %s® %newtrimairspeed

if newtrimairspeed <= Minairspeed:
print "Trim Airspeed is at Minimum*®

if newtrimairspeed > Minairspeed:
Script.ChangeParam("WPNAV_SPEED" ,newtrimairspeed)
TrimAirspeed = Script.GetParam ("WPNAV_SPEED®)
print "New Assigned Trim Airspeed: %s® %TrimAirspeed

if sonar < 2.75:

currenttrimairspeed = Script.GetParam ("WPNAV_SPEED®)

newtrimairspeed = currenttrimairspeed - 100

#print “New Airspeed: %s® %newtrimairspeed

if newtrimairspeed <= Minairspeed:
print *"Trim Airspeed is at Minimum*®

if newtrimairspeed > Minairspeed:
Script.ChangeParam("WPNAV_SPEED" ,newtrimairspeed)
TrimAirspeed = Script.GetParam ("WPNAV_SPEED™)
print “New Assigned Trim Airspeed: %s® %TrimAirspeed

75

Appendix B

Follower Script

#FlockingModeFol lower Capt Robert McClanahan(Modified from Gray 2015 to Use
Drone Kit)

Gets location of leader vehicle and sets waypoints to make follower vehicle
follow at

a fixed offset distance

Prerequisits:
Mavproxy Running to split data to Drone Kit and Mission Planner

Notes:
for best results, update system time

HHHFHHFHH

import socket

import sys

import math

import time

from datetime import datetime

import re

from numpy import matrix

import numpy as np

from LLA_ECEF_Convert import LLA_ECEF_Convert
from multi_vehicle_toolbox import follower_pos
from dronekit import connect, VehicleMode, LocationGlobalRelative, Command,
mavutil

"""INIT PARAMS®"*

#Follower offset parameters (relative to leader®s body frame)

off 11 _s=1 #L1 lead time constant [s] for forward offset waypoint
off_r =2 #radial distance [m] away from leader

off_theta = 0 #angle (deg) from -x axis (out of tail), CCW is (+) rotation
alt_agl_cmd=11 #alt agl [m] to be commanded, used in guided_pos

#timing prarameters
t_freg=8.0 #control loop frequency, must be faster than leader and float

(0.0)
freq_store=2.0 #frequency of storage of data to disk and must be float (0.0)
freq_print=1 #frequency of print statements (try to reduce this)

#other
msg_size=128 #size of msg to be passed

" " "DRONEKIT INT""="
v_follower = connect("127.0.0.1:14550", wait_ready=True)# Connect to follower
vehicle in Dronekit via MavProxy Split

print "Follower Vehicle Object Created"

"""DATA FILE INIT"""
timestr = time.strftime(""%m-%d-%Y_%H-%M-%S"") #date-time for file name

file_name="follower_gcs_tel_" + timestr #file name appended with date
time
data_file = open(file_name, "a") #create txt doc to append to

msg_data="%s %s %s" %(off_r,off_theta,off_I1_s)
data_file.write(msg_data + “\n")
print “"telemetry file open”

76

"""CONNECTION INIT"""

#Setup TCP link with leader_server

Port = 50005 # Port to TX/RX to/from leader_server
IP = "127.0.0.1" #Local Host IP

s = socket.socket(socket_AF_INET, socket.SOCK_DGRAM)
print "socket created”

s.bind((IP,Port)) # Connect socket

print "Bound to port " + str(Port)

"""Main Loop""*

rc_ch=v_follower_channels #Get Channel 5 Position
t_write=0 #forces first write to occure on start
t_print=0 #forces first print to occure on start
#Current location is posO, next location is posl

cmds = v_Tfollower.commands

cmds.download()

cmds.wait_ready()

print "starting control loop*®
while True:
#time._sleep(.1)

try:
#get current time for sleep...
tl=time.time()

if rc_ch["5"] > 1200: #MANUAL MODE FAIL SAFE, will not store data
v_follower._.mode = VehicleMode("'STABILIZE™)
print "Channel 5: %s®" %rc_ch["5"]

if time.time() - t_print > 1/freqg_print:
print "Follower Mode Set to Manual' +

str(datetime.now().time())
t_print=time.time()
time.sleep(0.01)

else:
print "getting leader telem”
#read leader tel from udp port
tel_leader = s.recv(msg_size) #get "lat(deg) lon(deg) alt(m)
gc(rad) v(m/s)"

#manipulate leader tel to parse out lat,lon,alt,heading/gc,velocity

pattern = re.compile(C"'[1) #Data patern (data seperated by
[1 i.e space)

param = pattern.split(tel_leader) #split data based on data
patern

pos_leader = np.array([float(param[0]),

float(param[1]), float(param[2]1)1)
#leader pos [lat(deg) lon(deg) alt(m)]

heading_l = np.rad2deg(float(param[3])) #leader ground course
(rad)
v_I = float(param[4]) #leader velocity (n/s)

#calculate desired position

off_Il1=off_I11_s*v_I #forward offset dist. ([m] = [s] * [W/s])
posl_f=follower_pos(off_r,off_theta,off_I1,

77

pos_leader,heading_1I) #posl f = [lat(deg)
lon(deg) alt(m)]

#Set new follower guided point
guided_pos= LocationGlobalRelative(posl_f[0],posl_f[1]-
360,alt_agl_cmd) #posl_f[1]-360
#print "guided position: %s® %guided_pos
if v_follower.mode '= "GUIDED": #iFf not already in guided...go
guided
v_follower_mode = VehicleMode(*"GUIDED™)

v_follower._simple_goto(guided_pos) #send guided point
cmds.upload()

#get telemetry information for storage

lat=str(v_follower.location.global_relative_frame.lat)
#latitude (9 bytes CHECK)

lon=str(v_follower.location.global_relative_frame.lon)
#longitude (9 bytes CHECK)

alt_asl = str(v_follower.location.global_relative_frame.alt)
#altitude above sea level (6 bytes CHECK)

sonar = v_follower.rangefinder.distance #Sonar reading

wpnav = v_Tollower.parameters[“"WPNAV_SPEED"] #WP Nav Speed

p=Float(np.deg2rad(v_follower.attitude.pitch)) #pitch (rad) of
vehicle relative to NEU frame

r=Float(np.deg2rad(v_follower.attitude.roll)) #roll (rad) of
vehicle relative to NEU frame

y=Float(np.deg2rad(v_follower.attitude.yaw)) #yaw (rad) of
vehicle relative to NEU frame

v_b= v_follower.velocity #velocity in x dir relative
to body (CHECK)

#determine gc relative to vehicle frame (NEU)
v_b=np.array([[v_b[0], v_b[1], v_b[2]11D)
c_r=np.cos(r); s_r=np.sin(r)
c_p=np.cos(p); s_p=np-sin(p)
c_y=np.cos(y); s_y=np-sin(y)
R_v_b=np.array([[c_p*c_y, C_p*s_y,
_S_p] 7
[s_r*s_p*c_y-c _r*s_y, S_r*s_p*s_y+c_r*c_y,
s r*c_pl,
[c_r*s_p*c_y+s r*s vy, C_r*s _p*s y-s_r*c_y,
c_r*c_p] D
#rotation transform from vehicle to body
v_v=np.dot(R_v_b.T,v_ b.T) #velocity vector relative to vehicle
(NEU) frame
gc=np.arctan2(v_v[1],v_v[0]) #ground course relative to NEU
(CHECK)
v=np.linalg.norm(v_v) #velocity of leader, used to calc L1
t_tel=time.time()

#iIT V 1s too slow use yaw as ground course
ifv<i1:

gc=y
cmds.upload()

#build telemetry data str
tel_msg_raw ="%s , %s , %s , %s , %s , %s , %s , %s
%(lat, lon,alt_asl,str(float(gc)),str(v),

, s , %s*

str(posl_f[0]),str(posl_f[1]-360),str(posl_f[2]), sonar, wpnav)

78

#append data with unix time on a new line of data txt file
if time.time() - t_write > 1/freqg_store:
msg_data="%s , %s" %(t_tel,tel_msg_raw)
data_file.write(msg_data + "\n")
t_write=time._time()

#print update message
if time.time() - t_print > 1/freqg_print:
print "cmd sent & telemetry stored: * +
str(datetime.now().time())
t_print=time.time()

#determine sleep time
t2=time.time()
t_remaining= (1/t _freq) - (€2 - t1)

if t_remaining > O: #sleep for remainder of this control cycle
time.sleep(t_remaining)
else: #the operations in the while loop took too

long
print "t _freq is too high*

except KeyboardInterrupt: #only way to stop the ride
data_file.close()
break

except:
print "Unexpected error:", sys.exc_info()[0]
data_file.close()
break

exit
s.close()
print “End of Script”

79

Appendix C

Leader Script

#FlockingModelLeader Capt Robert McClanahan(Modified from Gray 2015 to use Drone
Kit)

Gets location request from follower and gives the leaders location and
heading

#

Prerequisits:

Drone Kit Open

#

Notes:

for best results, update system time

import socket

import sys

from droneapi.lib import VehicleMode

from droneapi.lib import Command

from droneapi.lib import mavutil

import numpy as np

import math

import time

from datetime import datetime

from LLA_ECEF_Convert import LLA_ECEF_Convert
from multi_vehicle_toolbox import follower_pos
from dronekit import connect, VehicleMode, Command, mavutil

"""INIT PARAMS®*"*

freq_control=4.0 #frequency of control loop, must be < follower, must be
float (0.0)

freq_store=2.0 #frequency of data storage, must be float (0.0)
freg_print=1.0 #frequency of printed updates, must be float (0.0)
msg_size=128 #size of msg to be passed

" " "DRONEKIT INIT®""
v_leader = connect(“coml4®, wait_ready=True, baud=57600)# Connect to lead

vehicle
print "Leader Vehicle Object Created"

"""DATA FILE INIT"""
timestr = time.strftime(""%m-%d-%Y_%H-%M-%S"") #date-time for file name

file_name="leader_gcs_tel_" + timestr #file name appended with date
time
data_file = open(file_name, "a") #create txt doc to append to

print "telemetry file open”

"""CONNECTION INIT"""
#Setup UDP link with leader_server
Port = 50005 # Port to TX/RX to/from follower_client

IP = "127.0.0.1" #Local Host IP
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Create TCP socket
object

print "socket created”
address=(IP,Port)

""*Main LOOP™®""

80

t_write=0 #forces first write to occure on start
t_print=0

print "starting control loop*®

#Current location is locO, next location is locl

while True:

try:

#get current time for sleep...
tl=time.time()

#get telemetry information
lat=str(v_leader.location.global_relative_frame.lat)

#latitude (deg)

lon=str(v_leader.location.global_relative_frame.lon)

#longitude (deg)

alt_asl = str(v_leader.location.global_relative_frame.alt)

#altitude above sea level (m)

p=Float(np.deg2rad(v_leader.attitude.pitch)) #pitch (rad) of vehicle

relative to NEU frame

r=Float(np.deg2rad(v_leader.attitude.roll)) #roll (rad) of vehicle

relative to NEU frame

y=Float(np.deg2rad(v_leader.attitude.yaw)) #yaw (rad) of vehicle

relative to NEU frame

v_b=v_leader.velocity #velocity vectory (m/s)

relative to body

t_tel=time.time() #time telemetry was

recieved

S_p 1
s_r*c_p

c_r*c_p

frame
North

calc L1

#build m

length

#Flush data to leader
v_leader.flush()

#determine gc relative to vehicle frame (NED)
v_b=np.array([[v_b[0], v_b[1], v_b[2]111)
c_p=np.cos(p); s_p=np.sin(p)

c_r=np.cos(r); s_r=np.sin(r)

c_y=np.cos(y); s_y=np.sin(y)

R_v_b=np.array([[c_p*c_ vy, Cc_p*s. vy, -
’ [s_r*s_p*c_y-c _r*s_y, S_r*s_p*s_y+c_r*c_y,
1.
[c_r*s_p*c_y+s r*s vy, C_r*s _p*s_y-s r*c.y,
1 D

#rotation transform from vehicle to body
v_v=np.dot(R_v_b.T,v_b.T) #velocity vector relative to vehicle (NED)

gc=np.arctan2(v_v[1],v_v[0]) #ground course (rad) relative to
v=np.linalg.norm(v_v) #velocity of leader, used to

#if V Is too slow use yaw (rad) as ground course
if v < 0.25:

gc=y

#build telemetry msg to be a known length (msg_size)

tel_msg_raw ="%s %s %s %s %s" %(lat,lon,alt_asl,str(float(gc)),str(v))
Sg

tel_msg=msg_size*" *

if len(tel_msg_raw) < len(tel_msg): #set msg size to known

n_spaces=len(tel_msg)-len(tel_msg_raw)

81

tel_msg=tel_msg_raw + n_spaces * " *
else:

print "err: udp message exceeds length. Increase msg_size”
break

#send leader telemetry to follower over UDP
s.sendto(str(tel_msg),address)

#append data w/ unix time on new line of data txt file, if 1/freq_store
has pased
if time.time() - t_write > 1/freqg_store:
tel_msg_rawc = "%s , %s , %s , %s , %s*
%(lat, lon,alt_asl,str(float(gc)),str(v))
msg_data="%s , %s" %(t_tel,tel_msg_rawc)
data_file_write(msg_data + “\n")
t_write=time.time()

#print update message

if time.time() - t_print > 1/freq_print:
print "telemetry sent & stored: " + str(datetime.now().time())
t_print=time.time()

#determine sleep time
t2=time.time()
t_remaining= (1/freq_control) - (t2 - t1)

if t_remaining > O: #sleep for remainder of this control cycle
time.sleep(t_remaining)
else: #the operations in the while loop took too long

print “freqg_control is too high*®

except KeyboardInterrupt: #only way to stop the ride
data_file.close()
break

except:
print "Unexpected error:", sys.exc_info()[0]
data_file.close()
break

exit

s.close()
print “End of Script”

82

Appendix D

Multi-Vehicle Script

mult

i_vehicle_toolbox.py

Calculations required for multi-vehicle operations

impo
from

1) flocking follower pos calculation
2) comm relay relay vehicle midpoint pos calc

rt numpy as np
LLA_ECEF_Convert import LLA ECEF_Convert

def follower_pos(off_r,off_theta,off _I11,loc0_I,heading_I):

foll

)

the

#function description: determines the next desired location of the
ower

vehicle in lat lon alt (LLA)

#Inputs: off_r: radial distance away from leader [m]

off_theta: angle (deg) from -x axis (out of tail), CCW is
rotation

off_I1: distance the guided point is placed forward of
desired

follower location

locO_1I: location of the leader at current incriment of
heading_I: heading of the leader at current incriment of
#Outputs: locl T: current desired location of the follower

math

#Follower locl relative to leader body frame

off_theta+=180 #add 270 deg to make offset relative to east (+X axis for

)
off_theta=np.deg2rad(off_theta)

locl _f= off_r*np.array([np.cos(off_theta),np.sin(off_theta),0]) +

off_I1*np.array([1,0,0])

#Follower locl relative to Local Level Frame (L, North-East-Down) frame

#Heading is negative because +rotation of pix is -rotation in NED

frame

cos_h=np.cos(np.deg2rad(heading_1I))
sin_h=np.sin(np.deg2rad(heading_1I))

R_BtoL=np.array([[cos_h, sin_h, 0],
[-sin_h, cos_h, 0],
[O, 0, 1] 1) #Rotation from body to
local

locl _f=np.dot(locl_f,R_BtolL)
locl_f=np.array([locl_f[1], locl_f[0], -locl_f[2]11) #NED to ENU

#Follower locl from Local Level Frame (L, East-North-UP) to ECEF (E)
phi= np.deg2rad(locO_I[0]) #latitude of leader

la= np.deg2rad(locO_I[1]) #londitude of leader

sin_la= np.sin(l1a)

cos_la=np.cos(l1a)

sin_phi= np.sin(phi)

cos_phi=np.cos(phi)

R_LtoE=np.array([[-sin_la, -sin_phi*cos_la, cos_phi*cos_la 1],

83

[cos_la, -sin_phi*sin_Ila, cos_phi*sin_la 1],
[O, cos_phi, sin_phi 1 D
#Rotation from local to ecef

T_LtoE=LLA_ECEF_Convert(np.rad2deg(phi) ,np.rad2deg(la),locO_I[2], "LLAtoECEF")
locl f= np.dot(R_LtoE,locl f) + T_LtoE.T

#Follower Location ECEF to lat lon alt (LLA)
locl _f= LLA_ECEF Convert(locl_f[0], locl_f[1], locl_f[2], "ECEFtoLLA")
return locl_f

def relay_pos(pos_gcs_Ilh,pos_rem_l1h):

#function description: Calculates the midpoint between the GCS and
remote vehicle

to send the relay vehicle

#

#Inputs: pos_gcs_I1Ih: pos of GCS in lat lon hae

pos_rem_I1h: pos of remote vehicle in lat lon hae

#

#Outputs: pos_rel_lla: calculated pos of relay vehicle

#

#Notation:

Remote vehicle: rem

Relay vehicle: rel

Ground Control: GCS

#convert pos of rem & gcs from Ilh to ecef
pos_rem_ecef=LLA_ECEF_Convert(pos_rem_II1h[0],pos_rem_I1h[1],
pos_rem_I1h[2], "LLAtoECEF")

pos_gcs_ecef=LLA _ECEF_Convert(pos_gcs_I11h[0],pos_gcs_I11h[1],
pos_gcs_I1h[2], "LLAtoECEF")

#calculate midpoint in ecef
pos_rel_ecef=pos_gcs_ecef + 0.5*(pos_rem_ecef-pos_gcs_ecef)

#convert pos of rel from ecef to Ilh
pos_rel_lla=LLA _ECEF_Convert(pos_rel_ecef[0],pos_rel_ecef[1],
pos_rel_ecef[2], "ECEFtoLLA")

return pos_rel_lla

84

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) | 2. REPORT TYPE 3. DATES COVERED (From — To)
23-03-2017 Master’s Thesis August 2015 — March 2017
TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Improving Unmanned Aerial Vehicle Formation Flight and 5b. GRANT NUMBER
Swarm Cohesion by Using Commercial Off the Shelf Sonar S PROGRAN ELEVENTNOVBER
Sensors
6. AUTHOR(S) 5d. PROJECT NUMBER
McClanahan, Robert L., Captain, USAF 5e. TASK NUMBER
5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology REPORT NUMBER
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way, Building 640 AFIT-ENV-MS-17-M-202
WPAFB OH 45433-8865
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S
AFRL AEROSPACE SYSTEMS DIRECTORATE (RQ) ACRONYM(S)
2130 Eighth Street AFRL/RQ
Wright Patterson Air Force Base, Ohio 45433-7765 11. SPONSOR/MONITOR'S REPORT
(937) 938-4805 paul.fleitz@us.af.mil NUMBER(S)
ATTN: Paul Fleitz

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

14. ABSTRACT

Unmanned Aerial Vehicle (UAV) formation flight and swarming are active areas of research within the
Department of Defense (DoD). The current use of low cost commercial off the shelf (COTS) components
to architect UAV formation flights results in insufficient position accuracy of the UAVs in the formation.
This research aims to demonstrate the cohesiveness of formation flights increases by using onboard
sonar sensors to accurately measure the distance the follower UAV is from the leader UAV. This
research effort reduced the RMSD by 37.3% and the average position error by 70.9% when compared to
previous flight test.

15. SUBJECT TERMS
UAV, Swarming, formation flight

16. SECURITY CLASSIFICATION 17. LIMITATION 18. 19a. NAME OF RESPONSIBLE PERSON
OF: OFABSTRACT NUMBER Dr. David Jacques, AFIT/ENV
;-EPORT K-BSTRACT ;ATGHEIS OFPAGES M9, TELEPHONE NUMBER (Include area code)
UU 08 (937) 785-3355, ext 3329
U U U (david.jacques@afit.edu)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

85

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	List of Figures
	List of Tables
	I. Introduction
	1.1 Background
	1.2 Problem
	1.3 Objective
	1.4 Justification
	1.5 Scope
	1.6 Methodology
	1.7 Research Questions
	1.8 Materials/Equipment
	1.9 Thesis Summary

	II. Literature Review
	2.1 Chapter 2 Overview
	2.2 Swarming and Formation Flight Algorithms
	2.3 Onboard Sensors
	2.4 Pixhawk Autopilot
	2.5 Conclusion

	III. Methodology
	3.1 Introduction
	3.2 Overview
	3.3 Materials and Equipment
	3.3.1 Unmanned Aerial Vehicles
	3.3.2 Pixhawk Autopilot
	3.3.3 Sonar Sensor
	3.4 Procedures and Processes
	3.4.1 Algorithm
	3.4.2 Sonar Sensor Mounting
	3.4.3 Sonar Algorithm and Pixhawk Autopilot Response
	3.4.4 Flight test
	3.4.5 Data Analysis
	3.5 Summary

	IV. Results and Analysis
	4.1 Chapter 4 Overview
	4.2 Ground Tests
	4.2.1 Sonar Range Test
	4.2.2 Sonar Algorithm Ground Tests
	4.2.3 Guided Position Algorithm Ground Test
	4.3 Flight Tests and Results
	4.3.1 Initial 4m Separation Flight Test
	4.3.2 3m Separation Flight Tests
	4.3.2.1 Initial 3m Flight Test
	4.3.2.2 Final 3m Flight Test
	4.4 Flight Test Results Comparison

	V. Conclusions and Recommendations
	5.1 Chapter Overview
	5.2 Research Questions Answered
	5.3 Recommendations for Future Research
	5.4 System Implications
	5.5 Summary

	Appendix A
	Sonar Script

	Appendix B
	Follower Script

	Appendix C
	Leader Script

	Appendix D
	Multi-Vehicle Script

